Skip to main content
Log in

Interval twin support vector regression algorithm for interval input-output data

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

It is necessary to use interval data to define terms or describe extreme behaviors because of the existence of uncertainty in many real-world problems. In this paper, a novel efficient interval twin support vector regression (ITSVR) is proposed to handle such interval data. This ITSVR employs two nonparallel functions to identify the upper and lower sides of the interval output data, respectively, in which the Hausdorff distance is incorporated into the Gaussian kernel as the interval kernel for interval input data. Compared with other support vector regression (SVR)-based interval regression methods, such as the interval support vector interval regression networks (ISVIRN), this ITSVR algorithm is more efficient since only two smaller-sized QPPs are solved, respectively. The experimental results on several artificial datasets and three stock index datasets show the validity of ITSVR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  MathSciNet  Google Scholar 

  2. Pawlak Z (1992) Rough sets: theoretical aspects of reasoning about data. Kluwer, Dordrecht

    Google Scholar 

  3. Ishibuchi H, Tanaka H (1990) Several formulations of interval regression analysis. In: Proc. sino-Japan joint meeting on fuzzy sets and systems, Beijing, China, pp B2–2

  4. Ishibuchi H, Tanaka H (1992) Fuzzy regressiion analysis using neural networks. Fuzzy Sets Syst 50:57–65

    Article  MathSciNet  Google Scholar 

  5. Hashiyama T, Furuhash T, Uchikawa Y (1992) An interval fuzzy model using a fuzzy neural network. In: IEEE international conference neural networks. Baltimore, MD, USA, pp 745–750

  6. Ishibuchi H, Tanaka H, Okada H (1993) An architecture of neural networks with interval weights and its application to fuzzy regression analysis. Fuzzy Sets Syst 57:27–39

    Article  MATH  MathSciNet  Google Scholar 

  7. Ishibuchi H, Nii M (2001) Fuzzy regression using asymmetric fuzzy coefficients and fuzzified neural networks. Fuzzy Sets Syst 119:273–290

    Article  MATH  MathSciNet  Google Scholar 

  8. Cheng C, Lee E (2001) Fuzzy regression with radial basis function network. Fuzzy Sets Syst 119:291–301

    Article  MathSciNet  Google Scholar 

  9. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  10. Jeng J-T, Chuang C-C, Su S-F (2003) Support vector interval regression networks for interval regression analysis. Fuzzy Sets Syst 138:283–300

    Article  MATH  MathSciNet  Google Scholar 

  11. Hong DH, Hwang C (2005) Interval regression analysis using quadratic loss support vector machine. IEEE Trans Fuzzy Syst 13:229–237

    Article  MathSciNet  Google Scholar 

  12. Hwang C, Hong DH, Seok KH (2006) Support vector interval regression machine for crisp input and output data. Fuzzy Sets Syst 157:1114–1125

    Article  MATH  MathSciNet  Google Scholar 

  13. Lingras P, Butz CJ (2010) Rough support vector regression. Eur J Oper Res 206(2):445–455

    Article  MATH  Google Scholar 

  14. Hao P-Y (2009) Interval regression analysis using support vector networks. Fuzzy Sets Syst 160:2466–2485

    Article  MATH  Google Scholar 

  15. Schölkopf B, Smola A, Williamson R et al. (2000) New support vector algorithms. Neural Comput 12(5):1207–1245

    Article  Google Scholar 

  16. Chuang C-C (2008) Extended support vector interval regression networks for interval input-output data. Inf Sci 178:871–891

    Article  MATH  Google Scholar 

  17. Do TN, Poulet F (2005) Kernel methods and visualization for interval data mining. In: Internaional symposium on applied stochastic models and data analysis, ASMDA’05, France, pp 345–355

  18. Peng X (2010) TSVR: an efficient twin support vector machine for regression. Neural Netw 23:365–372

    Article  Google Scholar 

  19. Peng X (2010) Primal twin support vector regression and its sparse approximation. Neurocomputing 73(16–18):2846–2858

    Article  Google Scholar 

  20. Fung G, Mangasarian OL (2001) Proximal support vector machines. In: Proceedings of KDD-2001, San Francisco, pp 77–86

  21. Platt J (1999) Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in kernel methods-support vector learning. MIT Press, Cambridge, pp 185–208

    Google Scholar 

  22. Joachims T (1999) Making large-scale SVM learning practical. In: Schölkopf B, Burges C, Smola A (eds) Advances in kernel methods-support vector learning. MIT Press, Cambridge

  23. Mangasarian OL, Musicant DR (1999) Successive overrelaxation for support vector machines. IEEE Trans Neural Netw 10(5):1032–1037

    Article  Google Scholar 

  24. Allen DM (1974) The relationship between variable selection and prediction. Technometrics 16:125–127

    Article  MATH  MathSciNet  Google Scholar 

  25. Weisberg S (1985) Applied linear regression, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  26. D’Urso P, Gastaldi T (2002) An “orderwise” polynomial regression procedure for fuzzy data. Fuzzy Sets Syst 130:1–19

    Article  MATH  MathSciNet  Google Scholar 

  27. Peng X (2012) Efficient twin parametric insensitive support vector regression model. Neurocomputing 79:26–38

    Article  Google Scholar 

  28. Singh M, Chadha J, Ahuja P, Jayadeva Chandra S (2011) Reduced twin support vector regression. Neurocomputing 74(9):1474–1477

    Article  Google Scholar 

  29. Zhao Y, Zhao J, Zhao M (2013) Twin least squares support vector regression. Neurocomputing 118:225–36

    Article  Google Scholar 

  30. Tomar D, Agarwal S (2015) Twin support vector machine: a review from 2007 to 2014. Egypt Inform J 16(1):55–69

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers for their constructive comments and suggestions. This work is supported by the program of Shanghai Normal University (DZL121), the National Natural Science Foundation of Shanghai (12ZR1447100), the Natural Science Foundation of China (61202156), and the Natural Science Foundation of Zhejiang Province of China (Y6100588).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjun Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Chen, D., Kong, L. et al. Interval twin support vector regression algorithm for interval input-output data. Int. J. Mach. Learn. & Cyber. 6, 719–732 (2015). https://doi.org/10.1007/s13042-015-0395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-015-0395-9

Keywords

Navigation