Skip to main content

Advertisement

Log in

Biogeography, cryptic diversity, and queen dimorphism evolution of the Neotropical ant genus Ectatomma Smith, 1958 (Formicidae, Ectatomminae)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

An Erratum to this article was published on 02 September 2016

Abstract

Due to its high biodiversity and its complex climatic and geological history, the Neotropical region has caught the attention of evolutionary and conservation biologists. The Neotropics have an understudied and probably extensive cryptic diversity, stemming from old lineages that have persisted through time with highly similar morphology or from new morphologically undifferentiated sibling species. The wide-ranging Neotropical ant genus Ectatomma currently has only 15 described species, some of which present limited distribution. These ants provide an excellent system for the study of diversification and cryptic diversity in the Neotropics. Ectatomma also displays queen-size dimorphism in some northern populations of its two most common species: a case of true microgyny and a recently described parasitic species. We performed a phylogenetic and biogeographic analysis of Ectatomma species using two mitochondrial genes and one nuclear gene. We also explored the relationship between the history of the genus and the appearance of miniaturized queens. Our analysis recovered a monophyletic Ectatomma that originated in the Parana region of South America. We recorded three likely events of colonization of the Caribbean–Mesoamerican region. We also detected ample evidence of cryptic divergence that deserves a full taxonomic revision of the genus. Miniature queens—microgynes and parasites—represent two independent evolutionary events that appeared in the recent history of the genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abouheif, E., & Wray, G. A. (2002). Evolution of the gene network underlying wing polyphenism in ants. Science, 297, 249–252.

    Article  CAS  PubMed  Google Scholar 

  • Almeida, A. J. (1986). Descrição de quatro machos do gênero Ectatomma Smith, 1858 (Hymenoptera, Formicidae, Ponerinae). Quid, 6, 24–38.

    Google Scholar 

  • Almeida, A. J. (1987). Descrição de seis fêmeas do gênero Ectatomma Smith, 1858 (Hymenoptera, Formicidae, Ponerinae). Anais Sociedade Nordestina Zoologia, 1, 175–183.

    Google Scholar 

  • Arias-Penna, T. M. (2006). Redescription of the ant Ectatomma confine Mayr, 1870 (Hymenoptera: Formicidae) and first record for Colombia. Entomological News, 117, 445–450.

    Article  Google Scholar 

  • Arias-Penna, T.M. (2008). Chap. 3: Subfamilia Ectatomminae. In: E. Jimenez, F. Fernandez, T M. Arias, Lozano-Zambrano FH, (eds.), Sistemática, biogeografía y conservación de las hormigas cazadoras de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt 53–107.

  • Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., et al. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution, 22, 148–155.

    Article  PubMed  Google Scholar 

  • Blaimer, B. B. (2012). Acrobat ants go global – origin, evolution and systematics of the genus Crematogaster (Hymenoptera: Formicidae). Molecular and Phylogenetic Evolution. doi:10.1016/j.ympev.2012.06.028.

    Google Scholar 

  • Bolnick, D. I., & Fitzpatrick, B. M. (2007). Sympatric speciation: models and empirical evidence. Annual Review of Ecology, Evolution, and Systematics, 38, 459–487.

    Article  Google Scholar 

  • Bolton, B. (2003). Synopsis and classification of Formicidae. Memoirs of the American Entomological Institute, 71, 1–370.

    Google Scholar 

  • Bourke, A. F. G., & Franks, N. R. (1991). Alternative adaptations, sympatric speciation and the evolution of parasitic, inquiline ants. Biological Journal of the Linnean Society, 43, 157–178.

    Article  Google Scholar 

  • Breed, M. D., Abel, P., Bleuze, T. J., & Denton, S. E. (1990). Thievery, home ranges, and nestmate recognition in Ectatomma ruidum. Oecologia, 84, 117–121.

    Article  Google Scholar 

  • Breed, M. D., McGlynn, T. P., Stocker, E. M., & Klein, A. N. (1999). Thief workers and variation in nestmate recognition behavior in a ponerine ant, Ectatomma ruidum. Insectes Sociaux, 46, 327–331.

    Article  Google Scholar 

  • Brower, A. W. Z. (1994). Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America, 91, 6491–6495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, W. L., Jr. (1958). Contributions toward a reclassification of the Formicidae. II. Tribe Ectatommini (Hymenoptera). Bulletin of the Museum of Comparative Zoology, 118, 175–362.

    Google Scholar 

  • Buschinger, A. (1990). Sympatric speciation and radiative evolution of socially parasitic ants - heretic hypotheses and their factual background. Zeitschrift fuer Zoologische Systematik und Evolutionsforschung, 28, 241–260.

    Article  Google Scholar 

  • Buschinger, A. (2009). Social parasitism among ants: a review (Hymenoptera: Formicidae). Myrmecological News, 12, 219–235.

    Google Scholar 

  • Cupul-Magaña, F. G. (2009). Primera observación del comportamiento defensivo por muerte simulada de la hormiga Ectatomma ruidum (Roger, 1861) (Formicidae, Ponerinae). Acta Zoologica Mexicana, 25, 199–201.

    Google Scholar 

  • Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dornburg, A., Townsend, J. P., Friedman, P., & Near, T. J. (2014). Phylogenetic informativeness reconciles ray-finned fish molecular divergence times. BMC Evolutionary Biology, 14, 169.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmes, G. W. (1991). Mating strategy and isolation between the two forms, macrogyna and microgyna, of Myrmica ruginodis (Hym. Formicidae). Ecological Entomology, 16, 411–423.

    Article  Google Scholar 

  • Emery, C. (1901). Notes sur les sous-familles des Dorylines et Ponérines (Famille des Formicides). Annales de la Société Entomologique de Belgique, 45, 32–54.

    Google Scholar 

  • Emery, C. (1909). Über den Ursprungder dulotischen, parasitischen und myrmekophilen Ameisen. Biologische Centralblatt, 29, 352–362.

    Google Scholar 

  • Feitosa, R. M., Hora, R. R., Delabie, J. H. C., Valenzuela, J., & Fresneau, D. (2008). A new social parasite in the ant genus Ectatomma F. Smith (Hymenoptera, Formicidae, Ectatomminae). Zootaxa, 1713, 47–52.

    Google Scholar 

  • Fénéron, R., Poteaux, C., Boilève, M., Valenzuela, J., & Savarit, F. (2013). Discrimination of the social parasite Ectatomma parasiticum by its host sibling species (E. tuberculatum). Psyche, 2013, 1–11.

    Article  Google Scholar 

  • Ferreira, R. S., Poteaux, C., Delabie, J. H. C., Fresneau, D., & Rybak, F. (2010). Stridulations reveal cryptic speciation in Neotropical sympatric ants. PLoS ONE, 5(12), e15363. doi:10.1371/journal.pone.0015363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guénard, B., & McGlynn, T. P. (2013). Intraspecific thievery in the ant Ectatomma ruidum is mediated by food availability. Biotropica, 45, 1–6.

    Article  Google Scholar 

  • Hamaguchi, K., & Kinomura, K. (1996). Queen-size dimorphism in the facultatively polygynous ant Leptothorax spinosior (Hymenoptera: Formicidae). Sociobiology, 27, 241–251.

    Google Scholar 

  • Heinze, J., & Hölldobler, B. (1993). Queen polymorphism in an Australian weaver ant. Polyrhachis cf. doddi. Psyche, 100, 83–92.

    Google Scholar 

  • Hölldobler, B., & Wilson, E. O. (1990). The ants. Cambridge: Harvard Press.

    Book  Google Scholar 

  • Hora, R. R., Blatrix, R., Fresneau, D., & Fénéron, R. (2009). Social interactions between an inquiline ant, Ectatomma parasiticum, and its host, Ectatomma tuberculatum (Formicidae, Ectatomminae). Journal of Ethology, 27, 285–288.

    Article  Google Scholar 

  • Hora, R. R., Poteaux, C., Doums, C., Fresneau, D., & Fénéron, R. (2007). Egg cannibalism in a facultative polygynous ant: conflict for reproduction or strategy to survive? Ethology, 113, 909–916.

    Article  Google Scholar 

  • Hora, R. R., Vilela, E., Fénéron, R., Pezon, A., Fresneau, D., & Delabie, J. (2005). Facultative polygyny in Ectatomma tuberculatum (Formicidae: Ectatomminae). Insectes Sociaux, 52, 194–200.

    Article  Google Scholar 

  • Hubert, N., & Renno, F. (2006). Historical biogeography of South American freshwater fishes. Journal of Biogeography, 33, 1414–1436.

    Article  Google Scholar 

  • Ibarra-Núñez, G., García, J. A., López, J. A., & Lachaud, J. P. (2001). Prey analysis in the diet of some ponerine ants (Hymenoptera: Formicidae) and web-building spiders (Araneae) in coffee plantations in Chiapas, Mexico. Sociobiology, 37, 723–755.

    Google Scholar 

  • Jansen, G., Savolainen, R., & Vepsäläinen, K. (2010). Phylogeny, divergence-time estimation, biogeography and social parasite–host relationships of the Holarctic ant genus Myrmica (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 56, 294–304.

    Article  PubMed  Google Scholar 

  • Janzen, D. H. (1973). Evolution of polygynous obligate acacia-ants in western Mexico. Journal of Animal Ecology, 42, 727–750.

    Article  Google Scholar 

  • Jermiin, L. S., & Crozier, R. H. (1994). The cytochrome b region in the mitochondrial DNA of the ant Tetraponera rufoniger: sequence divergence in Hymenoptera may be associated with nucleotide content. Journal of Molecular Evolution, 38, 282–294.

    Article  CAS  PubMed  Google Scholar 

  • Kugler, C. & Brown Jr., W.L. (1982). Revisionary and other studies on the ant genus Ectatomma, including the descriptions of two new species. Search: Agriculture 24: 8 pp.

  • Lachaud, J. P., Cadena, A., Pérez-Lachaud, G., & Schatz, B. (1999a). Polygynie et stratégies reproductrices chez une ponérine néotropicale, Ectatomma ruidum. Actes des Colloques Insectes Sociaux, 2, 53–59.

    Google Scholar 

  • Lachaud, J. P., Cadena, A., Schatz, B., Pérez-Lachaud, G., & Ibarra-Núñez, G. (1999b). Queen dimorphism and reproductive capacity in the ponerine ant, Ectatomma ruidum Roger. Oecologia, 120, 515–523.

    Article  Google Scholar 

  • LeMasne, G. (1956). Recherches sur les fourmis parasites Plagiolepis grassei et l’évolution des Plagiolepis parasites. Comptes Rendus de l’Académie des Sciences, 243, 673–675.

    Google Scholar 

  • Lenoir, J. C., Lachaud, J. P., Nettel, A., Fresneau, D., & Poteaux, C. (2011). The role of microgynes in the reproductive strategy of the Neotropical ant Ectatomma ruidum. Naturwissenschaften, 98, 347–356.

    Article  CAS  PubMed  Google Scholar 

  • Lenoir, A., Devers, S., Marchand, P., Bressac, C., & Savolainen, R. (2010). Microgynous queens in the Palearctic ant, Manica rubida: dispersal morphs or social parasites? Journal of Insect Science, 10, 17.

    PubMed  PubMed Central  Google Scholar 

  • Lucas, C., Fresneau, D., Kolmer, K., Heinze, J., Delabie, J. H. C., & Pho, D. B. (2002). A multidisciplinary approach to discriminating different taxa in the species complex Pachycondyla villosa (Formicidae). Biological Journal of the Linnean Society, 75(2), 249–259.

    Article  Google Scholar 

  • Lucky, A., & Sarnat, E. M. (2010). Biogeography and diversification of the Pacific ant genus Lordomyrma Emery. Journal of Biogeography, 37, 624–634.

    Article  Google Scholar 

  • Lucky, A. (2011). Molecular phylogeny and biogeography of the spider ants, genus Leptomyrmex Mayr (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 59, 281–292.

    Article  PubMed  Google Scholar 

  • Majer, J. D., Delabie, J. H. C., & Smith, M. R. B. (1994). Arboreal ant community patterns in Brazilian cocoa farms. Biotropica, 26, 73–83.

    Article  Google Scholar 

  • McInnes, D. A., & Tschinkel, W. R. (1995). Queen dimorphism and reproductive strategies in the fire ant Solenopsis geminata (Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 36, 367–375.

    Article  Google Scholar 

  • Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees (pp. 1–8). New Orleans: Proceedings of the Gateway Computing Environments Workshop (GCE).

    Google Scholar 

  • Molet, M., Peeters, C., & Fisher, B. L. (2007). Winged queens replaced by reproductives smaller than workers in Mystrium ants. Naturwissenschaften, 94, 280–287.

    Article  CAS  PubMed  Google Scholar 

  • Moreau, C. S., & Bell, C. D. (2013). Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution, 67, 2240–2257.

    Article  PubMed  Google Scholar 

  • Moreau, C. S., Bell, C. D., Vila, R., Archibald, S. B., & Pierce, N. E. (2006). Phylogeny of the ants: diversification in the age of angiosperms. Science, 312, 101–104.

    Article  CAS  PubMed  Google Scholar 

  • Morrone, J. J. (2006). Biogeographic areas and transition zones of Latin America and the Caribbean Islands based on panbiogeographic and cladistic analyses of the entomofauna. Annual Review of Entomology, 51, 467–494.

    Article  CAS  PubMed  Google Scholar 

  • Near, T. J., & Keck, B. P. (2013). Free from mitochondrial DNA: nuclear genes and the inference of species trees among closely related darter lineages (Teleostei: Percidae: Etheostomatinae). Molecular Phylogenetics and Evolution, 66, 868–876.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas, K. B., Nicholas, H. B., Jr., & Deerfield, D. W. (1997). GeneDoc: analysis and visualization of genetic variation. Embnew News, 4, 14.

    Google Scholar 

  • Ouellette, G. D., Fisher, B. L., & Girman, D. J. (2006). Molecular systematics of basal subfamilies of ants using 28S rRNA (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 40, 359–369.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Lachaud, G., Valenzuela, J., & Lachaud, J. P. (2011). Is increased resistance to parasitism at the origin of polygyny in a Mexican population of the ant Ectatomma tuberculatum (Hymenoptera: Formicidae)? The Florida Entomologist, 94, 677–684.

    Article  Google Scholar 

  • Perfecto, I. (1990). Indirect and direct effects in a tropical agroecosystem: the maize-pest-ant system in Nicaragua. Ecology, 71, 2125–2134.

    Article  Google Scholar 

  • Rambaut, A. & Drummond, A.J. 2007. Tracer v1.4. Available at: http://beast.bio.ed.ac.uk/Tracer. Accessed 15 Aug 2014

  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.

  • Rull, V. (2011). Neotropical biodiversity: timing and potential drivers. Trends in Ecology and Evolution, 26, 508–513.

    Article  PubMed  Google Scholar 

  • Rüppell, O., & Heinze, J. (1999). Alternative reproductive tactics in females: the case of size polymorphism in winged ant queens. Insectes Sociaux, 46, 6–17.

    Article  Google Scholar 

  • Savarit, F., & Fénéron, R. (2014). Imperfect chemical mimicry explains the imperfect social integration of the inquiline ant, Ectatomma parasiticum (Hymenoptera: Formicidae: Ectatomminae). Myrmecological News, 20, 7–14.

    Google Scholar 

  • Savolainen, R., & Vepsäläinen, K. (2003). Sympatric speciation through intraspecific social parasitism. Proceedings of the National Academy of Sciences of the United States of America, 100, 7169–7174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatz, B., & Lachaud, J. P. (2008). Effect of high nest density on spatial relationships in two dominant Ectatommine ants. Sociobiology, 51, 623–643.

    Google Scholar 

  • Scheffers, B. R., Joppa, L. N., Pimm, S. L., & Laurance, W. F. (2012). What we know and don’t know about Earth’s missing biodiversity. Trends in Ecology and Evolution, 27, 501–510.

    Article  PubMed  Google Scholar 

  • Schlick-Steiner, B. C., Steiner, F. M., Moder, K., Seifert, B., Sanetra, M., Dyreson, E., Stauver, C., & Christian, E. (2006). A multidisciplinary approach reveals cryptic diversity in Western Palearctic Tetramorium ants (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 40, 259–273.

    Article  CAS  PubMed  Google Scholar 

  • Schlick-Steiner, B. C., Steiner, F. M., Sanetra, M., Heller, G., Stauffer, C., Christian, E., & Seifert, B. (2005). Queen size dimorphism in the ant Tetramorium moravicum (Hymenoptera, Formicidae): morphometric, molecular genetic and experimental evidence. Insectes Sociaux, 52, 186–193.

    Article  Google Scholar 

  • Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87, 651–701.

    Article  CAS  Google Scholar 

  • Smith, J. A., Tierney, S. M., Park, Y. C., Fuller, S., & Schwarz, M. P. (2007). Origins of social parasitism: the importance of divergence ages in phylogenetic studies. Molecular Phylogenetics and Evolution, 43, 1131–1137.

    Article  PubMed  Google Scholar 

  • Steiner, F. M., Schlick-Steiner, B. C., Konrad, H., Moder, K., Christian, E., Seifert, B., Crozier, R. H., Stauffer, C., & Buschinger, A. (2006). No sympatric speciation here: multiple data sources show that the ant Myrmica microrubra is not a separate species but an alternate reproductive morph of Myrmica rubra. Journal of Evolutionary Biology, 19, 777–787.

    Article  CAS  PubMed  Google Scholar 

  • Steiner, F. M., Seifert, B., Moderc, K., & Schlick-Steinera, B. C. (2010). A multisource solution for a complex problem in biodiversity research: description of the cryptic ant species Tetramorium alpestre sp.n. (Hymenoptera: Formicidae). Zoologischer Anzeiger, 249, 223–254.

    Article  Google Scholar 

  • Swallow, J. G., Wallace, F. E., Christianson, S. J., Johns, P. M., & Wilkinson, J. S. (2005). Genetic divergence does not predict change in ornament expression among populations of stalk-eyed flies. Molecular Ecology, 14, 3787–3800.

    Article  CAS  PubMed  Google Scholar 

  • Swofford, D.L. (2003). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.

  • Vepsäläinen, K., Ebsen, J. R., Savolainen, R., & Boomsma, J. J. (2009). Genetic differentiation between the ant Myrmica rubra and its microgynous social parasite. Insectes Sociaux, 56, 425–437.

    Article  Google Scholar 

  • Vieira, A. S., Antoniali-Junior, W. F., & Fernandes, W. D. (2007). Modelo arquitetônico de ninhos da formiga Ectatomma vizottoi Almeida (Hymenoptera, Formicidae). Revista Brasileira de Entomologia, 51, 489–493.

    Article  Google Scholar 

  • Ward, P. S., & Downie, D. A. (2005). The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): phylogeny and evolution of big-eyed arboreal ants. Systematic Entomology, 30, 310–335.

    Article  Google Scholar 

  • Wilson, J. S., Clark, S. L., Willims, K. A., & Pitts, J. P. (2012). Historical biogeography of the arid-adapted velvet ant Sphaeropthalma arota (Hymenoptera: Mutillidae) reveals cryptic species. Journal of Biogeography, 39, 336–352.

    Article  Google Scholar 

  • Yu, Y., Harris, A.J. & He, X.J. (2011). RASP (reconstruct ancestral state in phylogenies) 2.0 beta. Available at: http://mnh.scu.edu.cn/soft/blog/RASP. Accessed 30 Aug 2014

  • Zheng, Y., Peng, R., Kuro-o, M., & Zeng, X. (2011). Exploring patterns and extent of bias in estimating divergence time from mitochondrial DNA sequence data in a particular lineage: a case study of salamanders (Order Caudata). Molecular Biology and Evolution, 28, 2521–2535.

    Article  CAS  PubMed  Google Scholar 

  • Zinck, L., Jaisson, P., Hora, R. R., Denis, D., Poteaux, C., & Doums, C. (2007). The role of breeding system on ant ecological dominance: genetic analysis of Ectatomma tuberculatum. Behavioural Ecology, 18, 701–708.

    Article  Google Scholar 

  • Zwickl, D. J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin.

Download references

Acknowledgments

We thank J. Delabie, T. Delsinne, D. Donoso, R. Rodrigues, S. Lacau, J. Longino, A. López, C. Moreau, C. Schmidt, and C. Villemant for sending samples for analyses. We are grateful to L.R. Pérez-Marcelín for help with manuscript preparation, J. Flawell for correcting the English and two anonymous reviewers for their comments. The Fyssen Foundation granted postdoctoral funds to support A. Nettel-Hernanz in conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Nettel-Hernanz.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s13127-016-0302-6.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Distributional maps for Ectatomma species considered in this study. Countries of the Neotropical Region are shaded in yellow and countries where each species is reported are shaded in blue, correspondingly (light blue corresponding to assumed presence). (DOCX 3491 kb)

Table S1

Species sampled, localities, coordinates, coded biogeographic region according to Morrone (2006), GenBank accession numbers and voucher specimens deposited in collections. South American E. confine, E. planidens, and E. goninion were omitted because of the difficulty of procuring specimens. Lat, Latitude; Long, Longitude. Collection voucher codes correspond to the following: MNHN, Muséum National d´Histoire Naturelle – Paris, France; DD, local collection at Ecuador (managed by David Donoso); MZUSP, Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil; and CS, Corrie Moreau´s collection. (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nettel-Hernanz, A., Lachaud, JP., Fresneau, D. et al. Biogeography, cryptic diversity, and queen dimorphism evolution of the Neotropical ant genus Ectatomma Smith, 1958 (Formicidae, Ectatomminae). Org Divers Evol 15, 543–553 (2015). https://doi.org/10.1007/s13127-015-0215-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-015-0215-9

Keywords

Navigation