Skip to main content
Log in

Adrift across tectonic plates: molecular phylogenetics supports the ancient Laurasian origin of old limnic crangonyctid amphipods

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

A Correction to this article was published on 30 April 2019

This article has been updated

Abstract

Crangonyctidae is a speciose and almost exclusively freshwater Holarctic family of amphipod crustaceans. Its members inhabit groundwater as well as epigean biotopes with groundwater connections, and often exhibit endemic, relict distributions. Therefore, it has been proposed that this poorly dispersing, yet intercontinentally distributed family must have ancient Mesozoic origins. Here, we test the hypothesis that Crangonyctidae originated before the final break-up of Laurasia at the end of the Cretaceous. We used molecular phylogenetic analyses based on mitochondrial and nuclear markers and incorporated six out of the seven recognized genera. We calculated divergence times using a novel calibration scheme based exclusively on fossils and, for comparison, also applied substitution rates previously inferred for other arthropods. Our results indicate that crangonyctids originated during the Early Cretaceous in a northerly temperate area comprising nowadays North America and Europe, supporting the Laurasian origin hypothesis. Moreover, high latitude lineages were found to be generally older than the ones at lower latitudes, further supporting the boreal origin of the group and its relict biogeography. The estimated substitution rate of 1.773% Ma−1 for the COI marker agrees well with other arthropod rates, making it appropriate for dating divergences at various phylogenetic levels within the Amphipoda. Furthermore, our extensive phylogeny reinforces the polyphyly of the intercontinental genera Crangonyx, Stygobromus, and Synurella, supports the monophyly of Bactrurus, and elucidates the position of Lyurella. We conclude that crangonyctids are an ideal model for testing continental-level vicariance hypotheses and should be in the focus of future phylogenomic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 30 April 2019

    The above article was originally published with an error. Figures 1 and 2 were shown in the wrong order. The original article has been corrected.

References

  • Alonso, J., Arillo, A., Barrón, E., Corral, J. C., Grimalt, J., López, J. F., López, R., Martínez-Delclòs, X., Ortuño, V., Peñalver, E., & Trincão, P. R. (2000). A new fossil resin with biological inclusions in lower Cretaceousd deposits from Alava (northern Spain, Basque-Cantabrian basin). Journal of Paleontology, 74, 158–178. https://doi.org/10.1666/0022-3360(2000)074<0158:ANFRWB>2.0.CO;2.

    Article  Google Scholar 

  • Baraboshkin, E. Y., Alekseev, A. S., & Kopaevich, L. F. (2003). Cretaceous palaeogeography of the North-Eastern Peri-Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 196(1–2), 177–208. https://doi.org/10.1016/S0031-0182(03)00318-3.

    Article  Google Scholar 

  • Barnard, J. L., & Barnard, C. M. (1982). Biogeographical microcosms of world freshwater Amphipoda. Polskie Archiwum Hydrobiologii, 29(2), 255–273.

    Google Scholar 

  • Barnard, J. L., & Barnard, C. M. (1983). Freshwater Amphipoda of the World. Mt. Vernon, Virginia: Hayfield Associates.

    Google Scholar 

  • Bauzà-Ribot, M. M., Juan, C., Nardi, F., Oromí, P., Pons, J., & Jaume, D. (2012). Mitogenomic phylogenetic analysis supports continental-scale vicariance in subterranean thalassoid crustaceans. Current Biology, 22(21), 2069–2074. https://doi.org/10.1016/j.cub.2012.09.012.

    Article  CAS  PubMed  Google Scholar 

  • Boucot, J., Xu, C., & Scotese, C. R. (2013). Phanerozoic paleoclimate: an atlas of lithologic indicators of climate. SEPM Concepts in Sedimentology and Paleontology No. 11. Tulsa, Oklahoma: Society for Sedimentary Geology.

  • Bousfield, E. L. (1977). A new look at the systematics of Gammaroidean amphipods of the world. Crustaceana, 4(4), 282–316. https://doi.org/10.2307/25027471.

    Article  Google Scholar 

  • Brower, A. V. (1994). Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences, 91(14), 6491–6495. https://doi.org/10.1073/pnas.91.14.6491.

    Article  CAS  Google Scholar 

  • Chernomor, O., von Haeseler, A., & Minh, B. Q. (2016). Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65(6), 997–1008. https://doi.org/10.1093/sysbio/syw037.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coleman, C. O. (2004). Aquatic amphipods (Crustacea: Amphipoda: Crangonyctidae) in three pieces of Baltic amber. Organisms Diversity and Evolution, 4(1–2), 119–122. doi:https://doi.org/10.1016/j.ode.2004.01.003, 122.

  • Coleman, C. O. (2006). An amphipod of the genus Synurella Wrzesniowski, 1877 (Crustacea, Amphipoda, Crangonyctidae) found in Baltic amber. Organisms Diversity and Evolution, 6(2), 103–108. https://doi.org/10.1016/j.ode.2005.06.002.

    Article  Google Scholar 

  • Coleman, C. O., & Myers, A. A. (2000). New Amphipoda from Baltic amber. Polish Archives of Hydrobiology, 47(April), 457–464.

    Google Scholar 

  • Coleman, C. O., & Ruffo, S. (2002). Another discovery of a niphargid amphipod (Crustacea) in Baltic amber. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, 86, 239–244.

    Google Scholar 

  • Copilaș-Ciocianu, D., & Petrusek, A. (2015). The southwestern Carpathians as an ancient centre of diversity of freshwater gammarid amphipods: Insights from the Gammarus fossarum species complex. Molecular Ecology, 24(15), 3980–3992. https://doi.org/10.1111/mec.13286.

    Article  PubMed  Google Scholar 

  • Copilaș-Ciocianu, D., & Petrusek, A. (2017). Phylogeography of a freshwater crustacean species complex reflects a long-gone archipelago. Journal of Biogeography, 44, 421–432. https://doi.org/10.1111/jbi.12853.

    Article  Google Scholar 

  • Copilaș-Ciocianu, D., Rutová, T., Pařil, P., & Petrusek, A. (2017). Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the Western Carpathians. Molecular Phylogenetics and Evolution, 112, 218–229. https://doi.org/10.1016/j.ympev.2017.04.027.

    Article  PubMed  Google Scholar 

  • Copilaș-Ciocianu, D., Fišer, C., Borza, P., & Petrusek, A. (2018a). Is subterranean lifestyle reversible? Independent and recent large-scale dispersal into surface waters by two species of the groundwater amphipod genus Niphargus. Molecular Phylogenetics and Evolution, 119, 37–49. https://doi.org/10.1016/j.ympev.2017.10.023.

    Article  PubMed  Google Scholar 

  • Copilaș-Ciocianu, D., Zimța, A.-A., & Petrusek, A. (2018b). Integrative taxonomy reveals a new Gammarus species (Crustacea, Amphipoda) surviving in a previously unknown southeast European glacial refugium. Journal of Zoological Systematics and Evolutionary Research. https://doi.org/10.1111/jzs.12248.

  • Derzhavin, A. N. (1927). Notes on the Upper Sarmatian amphipods of the Ponto-Caspian region. Bulletin de la Societe des Naturalistes de Moscou, 2, 183–196.

    Google Scholar 

  • Derzhavin, A. N. (1941). Iskopaemye bokoplavy El’dara. Bulletin of the Azerbaijan filiation of the Academy of Sciences of the USSR, 2, 65–69.

    Google Scholar 

  • Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5), 699–710. https://doi.org/10.1371/journal.pbio.0040088.

    Article  CAS  Google Scholar 

  • Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969–1973. https://doi.org/10.1093/molbev/mss075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duchêne, S., Lanfear, R., & Ho, S. Y. W. (2014). The impact of calibration and clock-model choice on molecular estimates of divergence times. Molecular Phylogenetics and Evolution, 78(1), 277–289. https://doi.org/10.1016/j.ympev.2014.05.032.

    Article  PubMed  Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldholm, O., & Thiede, J. (1980). Cenozoic continental separation between Europe and Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 30, 243–259. https://doi.org/10.1016/0031-0182(80)90060-7.

    Article  Google Scholar 

  • Englisch, U., Coleman, C. O., & Wägele, J. W. (2003). First observations on the phylogeny of the families Gammaridae, Crangonyctidae, Melitidae, Niphargidae, Megaluropidae and Oedicerotidae (Amphipoda, Crustacea), using small subunit rDNA gene sequences. Journal of Natural History, 37(20), 2461–2486. https://doi.org/10.1080/00222930210144352.

    Article  Google Scholar 

  • Ethridge, J. Z., Gibson, J. R., & Nice, C. C. (2013). Cryptic diversity within and amongst spring-associated Stygobromus amphipods (Amphipoda: Crangonyctidae). Zoological Journal of the Linnean Society, 167(2), 227–242. https://doi.org/10.1111/j.1096-3642.2012.00877.x.

    Article  Google Scholar 

  • Fišer, C., Sket, B., & Trontelj, P. (2008). A phylogenetic perspective on 160 years of troubled taxonomy of Niphargus (Crustacea: Amphipoda). Zoologica Scripta, 37(6), 665–680. https://doi.org/10.1111/j.1463-6409.2008.00347.x.

    Article  Google Scholar 

  • Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistic software package for education and data analysis. Palaeontologica Electronica, 4, 1–9.

    Google Scholar 

  • Heggemann, H., Kohring, R., & Schlutert, T. (1990). Fossil plants and arthropods from the Phra Wihan Formation, presumably Middle Jurassic of northern Thailand. Alcheringa: An Australasian Journal of Palaeontology, 14, 311–316. https://doi.org/10.1080/03115519008619061.

    Article  Google Scholar 

  • Ho, S. Y. W., & Phillips, M. J. (2009). Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology, 58(3), 367–380. https://doi.org/10.1093/sysbio/syp035.

    Article  PubMed  Google Scholar 

  • Ho, S. Y. W., Lanfear, R., Bromham, L., Phillips, M. J., Soubrier, J., Rodrigo, A. G., & Cooper, A. (2011). Time-dependent rates of molecular evolution. Molecular Ecology, 20(15), 3087–3101. https://doi.org/10.1111/j.1365-294X.2011.05178.x.

    Article  PubMed  Google Scholar 

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35(2), 518–522. https://doi.org/10.1093/molbev/msx281.

    Article  CAS  PubMed  Google Scholar 

  • Holsinger, J. R. (1974). Systematics of the subterranean amphipod genus Stygobromus (Gammaridae), Part I: Species of the western United States. Smithsonian Contributions to Zoology, 160, 1–63.

    Article  Google Scholar 

  • Holsinger, J. R. (1977). A Review of the systematics of the Holarctic amphipod family Crangonyctidae. In Proceedings of the 3rd International Colloquium on Gammarus and Niphargus, Schlitz, 1975 (pp. 244–281). Schlitz.

  • Holsinger, J. R. (1986). Zoogeographic patterns of North American subterranean amphipod crustaceans. In R. H. Gore & K. L. Heck (Eds.), Crustacean biogeography (crustacean issues 4) (pp. 85–106). Rotterdam: A.A. Balkema.

    Google Scholar 

  • Holsinger, J. R. (1991). What can vicariance biogeographic models tell us about the distributional history of subterranean amphipods? Hydrobiologia, 223(1), 43–45. https://doi.org/10.1007/BF00047627.

    Article  Google Scholar 

  • Holsinger, J. R. (1992). Sternophysingidae, a new family of subterranean amphipods (Gammaridea: Crangonyctoidea) from South Africa, with description of Sternophysinx calceola, new species, and comments on phylogenetic and biogeographic relationships. Journal of Crustacean Biology, 12(1), 111–124. https://doi.org/10.2307/1548726.

    Article  Google Scholar 

  • Holsinger, J. R. (1994). Pattern and process in the biogeography of subterranean amphipods. Hydrobiologia, 287(1), 131–145. https://doi.org/10.1007/BF00006902.

    Article  Google Scholar 

  • Hou, Z., & Sket, B. (2016). A review of Gammaridae (Crustacea: Amphipoda): the family extent, its evolutionary history, and taxonomic redefinition of genera. Zoological Journal of the Linnean Society, 176(2), 323–348. https://doi.org/10.1111/zoj.12318.

    Article  Google Scholar 

  • Hou, Z., Sket, B., & Li, S. (2014). Phylogenetic analyses of Gammaridae crustacean reveal different diversification patterns among sister lineages in the Tethyan region. Cladistics, 30(4), 352–365. https://doi.org/10.1111/cla.12055.

    Article  PubMed  Google Scholar 

  • Hupało, K., Teixeira, M. A. L., Rewicz, T., Sezgin, M., Iannilli, V., Karaman, G. S., Grabowski, M., &. Costa, O. (2019). Persistence of phylogeographic footprints helps to understand cryptic diversity detected in two marine amphipods widespread in the Mediterranean basin. Molecular Phylogenetics and Evolution, 132, 53–66. doi:https://doi.org/10.1016/j.ympev.2018.11.013.

  • Iijima, A., & Tada, R. (1990). Evolution of Tertiary sedimentary basins of Japan in reference to opening of the Japan Sea. Journal of the Faculty of Science, the University of Tokyo, Section II Geology, Mineralogy, Geography, Geophysics, 22, 121–171.

    Google Scholar 

  • Jazdzewski, K., & Kulicka, R. Ó. A. (2002). New fossil amphipod, Palaeogammarus polonicus sp. nov. from the Baltic amber. Acta Geologica Polonica, 52(3), 379–383.

    Google Scholar 

  • Jazdzewski, K., Grabowski, M., & Kupryjanowicz, J. (2014). Further records of Amphipoda from Baltic Eocene amber with first evidence of prae-copulatory behaviour in a fossil amphipod and remarks on the taxonomic position of Palaeogammarus Zaddach, 1864. Zootaxa, 3765(5), 401–417. https://doi.org/10.11646/zootaxa.3765.5.1.

    Article  PubMed  Google Scholar 

  • Juberthie, C., Sidorov, D., Decu, V., Mikhaljova, E., & Semenchenko, K. (2016). Subterranean fauna from Siberia and Russian Far East (Siberia-Far East special issue) (Vol. 7, pp. 507–529). Ecologica Montenegrina.

  • Jurado-Rivera, J. A., Álvarez, G., Caro, J. A., Juan, C., Pons, J., & Jaume, D. (2017). Molecular systematics of Haploginglymus, a genus of subterranean amphipods endemic to the Iberian Peninsula (Amphipoda: Niphargidae). Contributions to Zoology, 86(3), 239–260.

    Google Scholar 

  • Just, J. (1974). On Palaeogammarus Zaddach, 1864, with a description of a new species from western Baltic amber (Crustacea, Amphipoda, Crangonycidae). Steenstrupia, 3(10), 93–99.

    Google Scholar 

  • Karaman, G. S. (1974). 58. Contribution to the knowledge of the Amphipoda. Genus Synurella Wrzes. In Yugoslavia with remarks on its all world known species, their synonymy, bibliography and distribution (fam. Gammaridae). Poljoprivreda i šumarstvo, Titograd, 20(2–3), 83–133.

    Google Scholar 

  • Karaman, G. S. (1984). Critical remarks to the fossil Amphipoda with description of some new taxa. Poljoprivreda i šumarstvo, Titograd, (4), 87–104.

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh, K., & Toh, H. (2008). Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics, 9(1), 212. https://doi.org/10.1186/1471-2105-9-212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ketmaier, V., Argano, R., & Caccone, A. (2003). Phylogeography and molecular rates of subterranean aquatic Stenasellid isopods with a peri-Tyrrhenian distribution. Molecular Ecology, 12(2), 547–555. https://doi.org/10.1046/j.1365-294X.2003.01734.x.

    Article  CAS  PubMed  Google Scholar 

  • Knowlton, N., & Weigt, L. A. (1998). New dates and new rates for divergence across the Isthmus of Panama. Proceedings of the Royal Society B: Biological Sciences, 265(1412), 2257–2263. https://doi.org/10.1098/rspb.1998.0568.

    Article  PubMed Central  Google Scholar 

  • Koenemann, S., & Holsinger, J. R. (2001). Systematics of the North American subterranean amphipod genus Bactrurus (Crangonyctidae). Beaufortia, 51(1), 1–56.

    Google Scholar 

  • Kornobis, E., Pálsson, S., Kristjánsson, B. K., & Svavarsson, J. (2010). Molecular evidence of the survival of subterranean amphipods (Arthropoda) during Ice Age underneath glaciers in Iceland. Molecular Ecology, 19(12), 2516–2530. https://doi.org/10.1111/j.1365-294X.2010.04663.x.

    Article  PubMed  Google Scholar 

  • Kornobis, E., Pálsson, S., Sidorov, D. A., Holsinger, J. R., & Kristjánsson, B. K. (2011). Molecular taxonomy and phylogenetic affinities of two groundwater amphipods, Crangonyx islandicus and Crymostygius thingvallensis, endemic to Iceland. Molecular Phylogenetics and Evolution, 58(3), 527–539. https://doi.org/10.1016/j.ympev.2010.12.010.

    Article  PubMed  Google Scholar 

  • Kornobis, E., Pálsson, S., & Svavarsson, J. (2012). Classification of Crangonyx islandicus (Amphipoda, Crangonyctidae) based on morphological characters and comparison with molecular phylogenies. Zootaxa, 66(3233), 52–66. https://doi.org/10.1099/ijs.0.047324-0.

    Article  Google Scholar 

  • Kristjánsson, B. K., & Svavarsson, J. (2004). Crymostygidae, a new family of subterranean freshwater gammaridean amphipods (Crustacea) recorded from subarctic Europe. Journal of Natural History, 38(15), 1881–1894. https://doi.org/10.1080/00222930310001597295.

    Article  Google Scholar 

  • Kupryjanowicz, J., & Jażdżewski, K. (2010). One more fossil Niphargid (Malacostraca: Amphipoda) from Baltic amber. Journal of Crustacean Biology, 30(3), 413–416. https://doi.org/10.1651/09-3259.1.

    Article  Google Scholar 

  • Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2017). PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772–773. https://doi.org/10.1093/molbev/msw260.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C.-W., Nakano, T., Tomikawa, K., & Min, G.-S. (2018). The complete mitochondrial genome of Pseudocrangonyx daejeonensis (Crustacea: Amphipoda: Pseudocrangonyctidae). Mitochondrial DNA Part B, 3(2), 823–824. https://doi.org/10.1080/23802359.2018.1495116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, H., Li, S., Ugolini, A., Momtazi, F., & Hou, Z. (2018). Tethyan closure drove tropical marine biodiversity: Vicariant diversification of intertidal crustaceans. Journal of Biogeography, 45(4), 941–951. https://doi.org/10.1111/jbi.13183.

    Article  Google Scholar 

  • Lloyd, C. R. (1982). The mid-Cretaceous Earth: paleogeography; ocean circulation and temperature; atmospheric circulation. Journal of Geology, 90, 939–413.

    Article  Google Scholar 

  • Lowry, J. K., & Myers, A. A. (2013). A phylogeny and classification of the Senticaudata subord. nov. (Crustacea: Amphipoda). Zootaxa, 3610(1), 1–80. doi:https://doi.org/10.11646/zootaxa.3610.1.1.

  • Lowry, J. K., & Myers, A. A. (2017). A phylogeny and classification of the Amphipoda with the establishment of the new order Ingolfiellida (Crustacea: Peracarida). Zootaxa, 4265(1), 1–89. https://doi.org/10.11646/zootaxa.4265.1.1.

    Article  CAS  PubMed  Google Scholar 

  • Mamos, T., Wattier, R., Burzynski, A., & Grabowski, M. (2016). The legacy of a vanished sea: A high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Molecular Ecology, 25(3), 795–810. https://doi.org/10.1111/mec.13499.

    Article  PubMed  Google Scholar 

  • McInerney, C. E., Maurice, L., Robertson, A. L., Knight, L. R. F. D., Arnscheidt, J., Venditti, C., Dooley, J. S. G., Mathers, T., Matthijs, S., Eriksson, K., Proudlove, G. S., & Hänfling, B. (2014). The ancient Britons: Groundwater fauna survived extreme climate change over tens of millions of years across NW Europe. Molecular Ecology, 23(5), 1153–1166. https://doi.org/10.1111/mec.12664.

    Article  PubMed  Google Scholar 

  • McKenna, M. C. (1981). Cenozoic Palaeogeography of North Atlantic land bridges. In M. H. P. Bott, S. Saxov, M. Talwani, & J. Thiede (Eds.), Structure and developement of the Greenland-Scotland Ridge (pp. 351–399). New York: Springer US. https://doi.org/10.1007/978-1-4613-3485-9.

    Chapter  Google Scholar 

  • McMenamin, M. A. S., Zapata, L. P., & Hussey, M. C. (2013). A Triassic giant amphipod from Nevada, USA. Journal of Crustacean Biology, 33, 751–759. https://doi.org/10.1163/1937240X-00002192.

    Article  Google Scholar 

  • Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. In Proceedings of the gateway computing environments workshop (GCE) (pp. 1–8). New Orleans, Louisiana.

  • Mosar, J., Eide, E. A., Osmundsen, P. T., Sommaruga, A., & Torsvik, T. H. (2002). Greenland-Norway separation: a geodynamic model for the North Atlantic. Norwegian Journal of Geology, 82, 281–298.

    Google Scholar 

  • Nahavandi, N., Ketmaier, V., Plath, M., & Tiedemann, R. (2013). Diversification of Ponto-Caspian aquatic fauna: morphology and molecules retrieve congruent evolutionary relationships in Pontogammarus maeoticus (Amphipoda: Pontogammaridae). Molecular Phylogenetics and Evolution, 69(3), 1063–1076. https://doi.org/10.1016/j.ympev.2013.05.021.

    Article  PubMed  Google Scholar 

  • Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300.

    Article  CAS  PubMed  Google Scholar 

  • Niemiller, M. L., Porter, M. L., Keany, J., Gilbert, H., Fong, D. W., Culver, D. C., Hobson, C. S., Kendall, K. D., Davis, M. A., & Taylor, S. J. (2018). Evaluation of eDNA for groundwater invertebrate detection and monitoring: a case study with endangered Stygobromus (Amphipoda: Crangonyctidae). Conservation Genetics Resources, 10(2), 247–257. https://doi.org/10.1007/s12686-017-0785-2.

    Article  Google Scholar 

  • Notenboom, J. (1991). Marine regressions and the evolution of groundwater dwelling amphipods (Crustacea). Journal of Biogeography, 18(4), 437–454. https://doi.org/10.2307/2845485.

    Article  Google Scholar 

  • Özbek, M. (2018). An overview on the distribution of Synurella genus in Turkey (Crustacea:Amphipoda). Ege Journal of Fisheries and Aquatic Sciences, 35(2), 111–114. https://doi.org/10.12714/egejfas.2018.35.2.01.

    Article  Google Scholar 

  • Papadopoulou, A., Anastasiou, I., & Vogler, A. P. (2010). Revisiting the insect mitochondrial molecular clock: The mid-Aegean trench calibration. Molecular Biology and Evolution, 27(7), 1659–1672. https://doi.org/10.1093/molbev/msq051.

    Article  CAS  PubMed  Google Scholar 

  • Rambaut, A., Suchard, M., Xie, D., & Drummond, A. J. (2014). Tracer v1.6. http://tree.bio.ed.ac.uk/software/tracer/.

  • Ree, R. H., Smith, S. A., & Baker, A. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57(1), 4–14. https://doi.org/10.1080/10635150701883881.

    Article  PubMed  Google Scholar 

  • Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saclier, N., François, C. M., Konecny-Dupré, L., Lartillot, N., Guéguen, L., Duret, L., Malard, F., Douady, C. J., & Lefébure, T. (2018). Life history traits impact the nuclear rate of substitution but not the mitochondrial rate in isopods. Molecular Biology and Evolution, 35, 2900–2912. https://doi.org/10.1093/molbev/msy184.

    Article  CAS  PubMed  Google Scholar 

  • Schram, F. R. (1986). Crustacea. New York: Oxford University Press.

    Google Scholar 

  • Schram, F. R. (2009). On the origin of Decapoda. In J. W. Martin, K. A. Crandall, & D. L. Felder (Eds.), Decapod crustacean phylogenetics (pp. 3–13). New York: Taylor & Francis.

    Chapter  Google Scholar 

  • Schram, F. R., Feldmann, R. M., & Copeland, M. J. (1978). The Late Devonian Palaeopalaemonidae and the earliest decapod crustaceans. Journal of Paleontology, 52, 1375–1387.

    Google Scholar 

  • Scotese, C. R. (2014). Atlas of late cretaceous Paleogeographic maps, PALEOMAP atlas for ArcGIS. The cretaceous, maps 1622. (Vol. 2). Evantson, IL: PALEOMAP Project. https://doi.org/10.13140/2.1.4691.3284.

  • Serejo, C. S., & Siqueira, S. G. L. (2018). Catalogue of the order Amphipoda from Brazil (Crustacea, Peracarida): suborders Amphilochidea, Senticaudata and order Ingolfiellida. Zootaxa, 4431, 1–139. https://doi.org/10.11646/zootaxa.4431.1.1.

    Article  CAS  PubMed  Google Scholar 

  • Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., & Chandler, M. (2012). Global continental and ocean basin reconstructions since 200Ma. Earth-Science Reviews, 113(3–4), 212–270. https://doi.org/10.1016/j.earscirev.2012.03.002.

    Article  Google Scholar 

  • Sey, I. I., Okuneva, T. M., Zonova, T. D., Kalacheva, E. D., & Yazykova, E. . (2004). Atlas of the Mesozoic marine fauna of the Far East, Russia. St-Petersburg: VSEGEI Press.

  • Sidorov, D. A. (2015). The spring-dwelling amphipod genus Lyurella (Peracarida, Amphipoda): Systematics, distribution, and affinity, with description of the second representative from the Black Sea coast region. Crustaceana, 88(1), 27–50. https://doi.org/10.1163/15685403-00003392.

    Article  Google Scholar 

  • Sidorov, D. A., & Gontcharov, A. A. (2015). Preliminary analysis of phylogenetic relationships of the Asian-Pacific endemial subterranean amphipod genus Pseudocrangonyx among families and genera of crangonyctoidean amphipods inferred by partial LSU rDNA gene sequences. Zoological Science, 32(2), 178–182. https://doi.org/10.2108/zs140129.

    Article  CAS  PubMed  Google Scholar 

  • Sidorov, D. A., & Holsinger, J. R. (2007). Amurocrangonyx, a new genus of subterranean amphipod (Crangonyctidae) from the Russian Far East, with a redescription of the poorly known Crangonyx arsenjevi and comments on biogeographic relationships. Journal of Crustacean Biology, 27(4), 660–669. https://doi.org/10.1651/S-2817R.1.

    Article  Google Scholar 

  • Sidorov, D. A., & Palatov, D. (2012). Taxonomy of the spring dwelling amphipod Synurella ambulans (Crustacea: Crangonyctidae) in West Russia: with notes on its distribution and ecology. European Journal of Taxonomy, 0, 1–19. https://doi.org/10.5852/ejt.2012.23.

    Article  Google Scholar 

  • Sidorov, D. A., Holsinger, J. R., & Takhteev, V. V. (2010). Two new species of the subterranean amphipod genus Stygobromus (Amphipoda: Crangonyctidae) from Siberia, with new data on Stygobromus pusillus (Martynov) and remarks on morphology and biogeographic relationships. Zootaxa, 2478, 41–58.

    Article  Google Scholar 

  • Sidorov, D. A., Pankov, N. N., & Holsinger, J. R. (2012). Distribution and ecology of the subterranean amphipod Crangonyx chlebnikovi Borutzky, 1928 (Crustacea: Crangonyctidae) with lectotype designation and comments on morphology of the lateral cephalic lobe. Arthropoda Selecta, 21(2), 149–160.

    Google Scholar 

  • Starr, H. W., Hegna, T. A., & McMenamin, M. A. S. (2016). Epilogue to the tale of the Triassic amphipod: Rosagammarus Mcmenamin, Zapata and Hussey, 2013 is a decapod tail (Luning Formation, Nevada, USA). Journal of Crustacean Biology, 36, 525–529. https://doi.org/10.1163/1937240X-00002444.

    Article  Google Scholar 

  • Stock, J. H. (1980). Regression model evolution as exemplified by the genus Pseudoniphargus (Amphipoda). Bijdragen tot de Dierkunde, 50(1), 105–144.

    Google Scholar 

  • Stock, J. H. (1993). Some remarkable distribution patterns in stygobiont amphipoda. Journal of Natural History, 27(4), 807–819. https://doi.org/10.1080/00222939300770491.

    Article  Google Scholar 

  • Stokkan, M., Jurado-Rivera, J. A., Oromí, P., Juan, C., Jaume, D., & Pons, J. (2018). Species delimitation and mitogenome phylogenetics in the subterranean genus Pseudoniphargus (Crustacea: Amphipoda). Molecular Phylogenetics and Evolution, 127, 988–999. https://doi.org/10.1016/j.ympev.2018.07.002.

    Article  PubMed  Google Scholar 

  • Svavarsson, J., & Kristjánsson, B. K. (2006). Crangonyx islandicus sp. nov., a subterranean freshwater amphipod (Crustacea, Amphipoda, Crangonyctidae) from springs in lava fields in Iceland. Zootaxa, 1365, 1–17. https://doi.org/10.11646/zootaxa.1365.1.1.

    Article  Google Scholar 

  • Talavera, G., & Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56(4), 564–577. https://doi.org/10.1080/10635150701472164.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, S. J., & Niemiller, M. L. (2016). Biogeography and conservation assessment of Bactrurus groundwater amphipods (Crangonyctidae) in the central and eastern United States. Subterranean Biology, 17, 1–29. https://doi.org/10.3897/subtbiol.17.7298.

    Article  Google Scholar 

  • Thiede, J. (1979). Paleogeography and paleobathymetry of the Mesozoic and Cenozoic North Atlantic Ocean. GeoJournal, 3(3), 263–272.

    Article  Google Scholar 

  • Tiffney, B. H. (1985). The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. Journal of the Arnold Arboretum, 66(2), 243–273.

    Article  Google Scholar 

  • Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A., & Minh, B. Q. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44(1), 232–235. https://doi.org/10.1093/nar/gkw256.

    Article  CAS  Google Scholar 

  • Väinölä, R., Witt, J. D. S., Grabowski, M., Bradbury, J. H., Jazdzewski, K., & Sket, B. (2008). Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia, 595(1), 241–255. https://doi.org/10.1007/s10750-007-9020-6.

    Article  Google Scholar 

  • Vakhrameev, V. A. (1987). Cretaceous paleogeography of the U.S.S.R. Palaeogeography, Palaeoclimatology, Palaeoecology, 59, 57–67. https://doi.org/10.1016/0031-0182(87)90074-5.

    Article  Google Scholar 

  • Vonk, R., & Schram, F. R. (2007). Three new tanaid species (Crustacea, Peracarida, Tanaidacea) from the Lower Cretaceous Álava amber in Northern Spain. Journal of Paleontology, 81, 1502–1509. https://doi.org/10.1666/05-020.1.

    Article  Google Scholar 

  • Wilke, T., Schultheiß, R., & Albrecht, C. (2009). As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates. American Malacological Bulletin, 27(1–2), 25–45. https://doi.org/10.4003/006.027.0203.

    Article  Google Scholar 

  • Williams, W. D., & Barnard, J. L. (1988). The taxonomy of crangonyctoid Amphipoda (Crustacea) from Australian fresh waters: foundation studies. Records of the Australian Museum, Supplement, 10, 1–180. https://doi.org/10.3853/j.0812-7387.10.1988.94.

    Article  Google Scholar 

  • Wolfe, J. M., Daley, A. C., Legg, D. A., & Edgecombe, G. D. (2016). Fossil calibrations for the arthropod Tree of Life. Earth-Science Reviews, 160, 43–110. https://doi.org/10.1016/j.earscirev.2016.06.008.

    Article  Google Scholar 

  • Xia, X. (2009). Assessing substitution saturation with DAMBE. In P. Lemey, M. Salemi, & A.-M. Vandamme (Eds.), The phylogenetic handbook (2nd ed., pp. 1–723). New York: Cambridge University Press.

    Google Scholar 

  • Xia, X., & Xie, Z. (2003). DAMBE: Software package for data analysis in molecular biology and evolution. Journal of Heredity, 92, 371–373.

    Article  Google Scholar 

  • Xia, X., Xie, Z., Salemi, M., Chen, L., & Wang, Y. (2003). An index of substitution saturation and its application. Molecular Phylogenetics and Evolution, 26(1), 1–7. https://doi.org/10.1016/S1055-7903(02)00326-3.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Hou, Z., & Li, S. (2013). Marine incursion into East Asia: a forgotten driving force of biodiversity. Proceedings of the Royal Society B: Biological Sciences, 280, 20122892. https://doi.org/10.1098/rspb.2012.2892.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, Y., Harris, A. J., Blair, C., & He, X. (2015). RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution, 87, 46–49. https://doi.org/10.1016/j.ympev.2015.03.008.

    Article  PubMed  Google Scholar 

  • Zakharov, V. A., Shurygin, B. N., Kurushin, N. I., Meledina, S., & Nikitenko, B. L. (2002). A Mesozoic ocean in the Arctic: paleontological evidence. Russian Geology and Geophysics, 43(2), 143–170.

    Google Scholar 

  • Zhang, J., & Holsinger, J. R. (2003). Systematics of the freshwater amphipod genus Crangonyx (Crangonyctidae) in North America. Virginia Museum of Natural History Memoir, 6, 1–274.

    CAS  Google Scholar 

  • Zhang, X. G., Siveter, D. J., Waloszek, D., & Maas, A. (2007). An epipodite-bearing crown-group crustacean from the Lower Cambrian. Nature, 449(7162), 595–598. https://doi.org/10.1038/nature06138.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Y., & Wiens, J. J. (2015). Do missing data influence the accuracy of divergence-time estimation with BEAST? Molecular Phylogenetics and Evolution, 85, 41–49. https://doi.org/10.1016/j.ympev.2015.02.002.

    Article  PubMed  Google Scholar 

  • Zykin, V. S., Lebedeva, N. K., Shurygin, B. N., Marinov, V. A., & Smirnova, T. N. (2008). Paleontological evidences of the availability of marine Upper Cretaceous on Gorny Altai. In O. S. Dzyuba, V. A. Zakharov, & B. N. Shurygin (Eds.), Proceeding of the Fourth All-Russian meeting, Novosibirsk, September 19–23, 2008 (pp. 90–92). Novosibirsk: Publishing House SB RAS.

Download references

Acknowledgments

The research in Europe, Caucasus, Siberia, and Far East was carried out by various scientific teams during several different field trips to Ukraine in November 2010, Turkey in April 2011, Georgia in 2009/2015, Armenia in August 2011, and Russia in 2001/2013. DS would like to express deepest gratitude to Dmitry Palatov, Mikhail Bizin and Vadim Marinskiy (Moscow State University), Oleg Kovtun (Odessa National University), Elena Khamenkova (Institute of Biological Problems of the North) and Mikhail Ermokhin (Saratov State University) for their careful collections of the studied cave/spring samples, and to Vadim Takhteev and Stanislav Gamayunov (Irkutsk State University), who were involved in sampling expeditions to the Olkhinsky and Orekhovy springs respectively. DCC thanks Adam Petrusek and Pavel Pešek for providing specimens and was supported by the Charles University Grant Agency, project no. 1398214 and the Nature Research Centre, Vilnius. DS was supported by the Russian Foundation for Basic Research, project no. 09/10-04-98544. Two anonymous reviewers are thanked for their useful remarks. We dedicate this study to the memory of our elder colleague Prof. John R. Holsinger, whose 50-year career left a significant impact on the systematics, biogeography, biodiversity, and conservation of subterranean amphipods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Copilaş-Ciocianu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Figures 1 and 2 were shown in the wrong version and are now presented correctly in this article.

Electronic supplementary material

ESM 1

(XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Copilaş-Ciocianu, D., Sidorov, D. & Gontcharov, A. Adrift across tectonic plates: molecular phylogenetics supports the ancient Laurasian origin of old limnic crangonyctid amphipods. Org Divers Evol 19, 191–207 (2019). https://doi.org/10.1007/s13127-019-00401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-019-00401-7

Keywords

Navigation