Skip to main content
Log in

Ecological functions of uncultured microorganisms in the cobalt-rich ferromanganese crust of a seamount in the central Pacific are elucidated by fosmid sequencing

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Cobalt-rich ferromanganese is an important seafloor mineral and is abundantly present in the seamount crusts. Such crusts form potential hotspots for biogeochemical activity and microbial diversity, yet our understanding of their microbial communities is lacking. In this study, a cultivation-independent approach was used to recover genomic information and derive ecological functions of the microbes in a sediment sample collected from the cobalt-rich ferromanganese crust of a seamount region in the central Pacific. A total of 78 distinct clones were obtained by fosmid library screening with a 16S rRNA based PCR method. Proteobacteria and MGI Thaumarchaeota dominated the bacterial and archaeal 16S rRNA gene sequence results in the microbial community. Nine fosmid clones were sequenced and annotated. Numerous genes encoding proteins involved in metabolic functions and heavy metal resistance were identified, suggesting alternative metabolic pathways and stress responses that are essential for microbial survival in the cobalt-rich ferromanganese crust. In addition, genes that participate in the synthesis of organic acids and exoploymers were discovered. Reconstruction of the metabolic pathways revealed that the nitrogen cycle is an important biogeochemical process in the cobalt-rich ferromanganese crust. In addition, horizontal gene transfer (HGT) events have been observed, and most of them came from bacteria, with some occurring in archaea and plants. Clone W4-93a, belonging to MGI Thaumarchaeota, contained a region of gene synteny. Comparative analyses suggested that a high frequency of HGT events as well as genomic divergence play important roles in the microbial adaption to the deep-sea environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi O, Ano Y, Toyama H, et al. 2007. Biooxidation with PQQ- and FAD-dependent dehydrogenases. In: Schmid R D, Urlacher V B, eds. Modern Biooxidation: Enzymes, Reactions and Applications. Hoboken, NJ: John Wiley & Sons, Inc, 41

    Google Scholar 

  • Béjà O, Koonin E V, Aravind L, et al. 2002. Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces. Applied and Environmental Microbiology, 68(1): 335–345

    Article  Google Scholar 

  • Beman J M, Popp B N, Alford S E. 2012. Quantification of ammonia oxidation rates and ammonia-oxidizing archaea and bacteria at high resolution in the Gulf of California and eastern tropical North Pacific Ocean. Limnology and Oceanography, 57(3): 711–726

    Article  Google Scholar 

  • Blainey P C, Mosier A C, Potanina A, et al. 2011. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS One, 6(2): e16626

    Article  Google Scholar 

  • Candela T, Fouet A. 2006. Poly-gamma-glutamate in bacteria. Molecular Microbiology, 60(5): 1091–1098

    Article  Google Scholar 

  • Clark M R, Rowden A A, Schlacher T, et al. 2010. The ecology of seamounts: structure, function, and human impacts. Ann Rev Mar Sci, 2: 253–278

    Article  Google Scholar 

  • Craig J D, Andrews J E, Meylan M A. 1982. Ferromanganese deposits in the Hawaiian Archipelago. Marine Geology, 45(1–2): 127–157

    Article  Google Scholar 

  • Delaney M L. 1998. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochemical Cycles, 12(4): 563–572

    Article  Google Scholar 

  • Dell’Anno A, Danovaro R. 2005. Extracellular DNA plays a key role in deep-sea ecosystem functioning. Science, 309(5744): 2179

    Article  Google Scholar 

  • DeLong E F. 1992. Archaea in coastal marine environments. Proceedings of the National Academy of Sciences of the United States of America, 89(12): 5685–5689

    Article  Google Scholar 

  • Duffy E J. 2008. ‘Seamount”. CenSeam: a global census of marine life on seamounts content partner and national oceanic and atmospheric administration content source. In: Cleveland C J, ed. Encycleopedia of Earth. Washington DC: Environmental Information Coalition, National Council for Science and the Environment

    Google Scholar 

  • Ehrhardt C J, Haymon R M, Lamontagne M G, et al. 2007. Evidence for hydrothermal Archaea within the basaltic flanks of the East Pacific Rise. Environmental Microbiology, 9(4): 900–912

    Article  Google Scholar 

  • Emerson D, Moyer C L. 2010. Microbiology of seamounts: common patterns observed in community structure. Oceanography, 23: 148–163

    Article  Google Scholar 

  • Finkel S E. 2006. Long-term survival during stationary phase: evolution and the GASP phenotype. Nat Rev Microbiol, 4(2): 113–120

    Article  Google Scholar 

  • Finkel S E, Kolter R. 2001. DNA as a nutrient: novel role for bacterial competence gene homologs. Journal of Bacteriology, 183(21): 6288–6293

    Article  Google Scholar 

  • Fu Yazhou, Peng Jiantang, Qu Wenjun, et al. 2005. Os isotopic compositions of a cobalt-rich ferromanganese crust profile in Central Pacific. Chin Sci Bull, 50(18): 2106–2112

    Article  Google Scholar 

  • Gadd G M. 2007. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(Pt 1): 3–49

    Article  Google Scholar 

  • García-Martínez J, Martínez-Murcia A, Antón A I, et al. 1996. Comparison of the small 16S to 23S intergenic spacer region (ISR) of the rRNA operons of some Escherichia coli strains of the ECOR collection and E. coli K-12. Journal of Bacteriology, 178(21): 6374–6377

    Google Scholar 

  • Ghiorse W C. 1984. Biology of iron- and manganese-depositing bacteria. Annu Rev Microbiol, 38: 515–550

    Article  Google Scholar 

  • Gillan D C, Danis B. 2007. The archaebacterial communities in Antarctic bathypelagic sediments. Deep-Sea Research Part II: Topical Studies in Oceanography, 54(16–17): 1682–1690

    Article  Google Scholar 

  • Guibaud G, van Hullebusch E, Bordas F, et al. 2009. Sorption of Cd(II) and Pb(II) by exopolymeric substances (EPS) extracted from activated sludges and pure bacterial strains: Modeling of the metal/ligand ratio effect and role of the mineral fraction. Bioresource Technology, 100(12): 2959–2968

    Article  Google Scholar 

  • Heijs S K, Haese R R, van der Wielen P W, et al. 2007. Use of 16S rRNA gene based clone libraries to assess microbial communities potentially involved in anaerobic methane oxidation in a Mediterranean cold seep. Microbial Ecology, 53(3): 384–398

    Article  Google Scholar 

  • Hillier J K, Watts A B. 2007. Global distribution of seamounts from ship-track bathymetry data. Geophysical Research Letters, 34(13): L13304

    Article  Google Scholar 

  • Ito M, Tsunekawa M, Yamaguchi E, et al. 2008. Estimation of degree of liberation in a coarse crushed product of cobalt-rich ferromanganese crust/nodules and its gravity separation. International Journal of Mineral Processing, 87(3–4): 100–105

    Article  Google Scholar 

  • Iyer S D, Mehta M C, Das P, et al. 2012. Seamounts—characteristics, formation, mineral deposits and biodiversity. Geologica Acta, 10(3): 295–308

    Google Scholar 

  • Jiang Xiawei, Xu Xuewei, Huo Yingyi, et al. 2012. Identification and characterization of novel esterases from a deep-sea sediment metagenome. Archives of Microbiology, 194(3): 207–214

    Article  Google Scholar 

  • Könneke M, Bernhard A E, de la Torre J R, et al. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058): 543–546

    Article  Google Scholar 

  • Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1): 27–30

    Article  Google Scholar 

  • Kato S, Kobayashi C, Kakegawa T, et al. 2009. Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the Southern Mariana Trough. Environmental Microbiology, 11(8): 2094–2111

    Article  Google Scholar 

  • Kato S, Yanagawa K, Sunamura M, et al. 2009. Abundance of Zetaproteobacteria within crustal fluids in back-arc hydrothermal fields of the Southern Mariana Trough. Environmental Microbiology, 11(12): 3210–3222

    Article  Google Scholar 

  • Koschinsky A, Hein J R. 2003. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Marine Geology, 198(3–4): 331–351

    Article  Google Scholar 

  • Li Meng, Gu Jidong. 2013. Community structure and transcript responses of anammox bacteria, AOA, and AOB in mangrove sediment microcosms amended with ammonium and nitrite. Applied Microbiology and Biotechnology, 97(22): 9859–9874

    Article  Google Scholar 

  • Li Youxun, Li Fuchao, Zhang Xiaowen, et al. 2008. Vertical distribution of bacterial and archaeal communities along discrete layers of a deep-sea cold sediment sample at the East Pacific Rise (∼13°N). Extremophiles, 12(4): 573–585

    Article  Google Scholar 

  • Liao L, Xu X W, Jiang X W, et al. 2011. Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean. FEMS Microbiology Ecology, 78(3): 565–585

    Article  Google Scholar 

  • Lopez-Diaz I, Clarke S, Mandelstam J. 1986. spoIID Operon of Bacillus subtilis: cloning and sequence. Journal of General Microbiology, 132(2): 341–354

    Google Scholar 

  • Lösekann T, Knittel K, Nadalig T, et al. 2007. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Applied and Environmental Microbiology, 73(10): 3348–3362

    Article  Google Scholar 

  • Martín-Cuadrado A B, López-García P, Alba J C, et al. 2007. Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PLoS One, 2(9): e914

    Article  Google Scholar 

  • Martin-Cuadrado A B, Rodriguez-Valera F, Moreira D, et al. 2008. Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions. The ISME Journal, 2(8): 865–886

    Article  Google Scholar 

  • Menard H W. 1964. Marine Geology of the Pacific. New York: Mc-Graw-Hill

    Google Scholar 

  • Miroshnichenko M, Hippe H, Stackebrandt E, et al. 2001. Isolation and characterization of Thermococcus sibiricus sp. nov. from a Western Siberia high-temperature oil reservoir. Extremophiles, 5(2): 85–91

    Article  Google Scholar 

  • Muiños S B, Hein J R, Frank M, et al. 2013. Deep-sea Fe-Mn crusts from the Northeast Atlantic Ocean: composition and resource considerations. Marine Georesources & Geotechnology, 31(1): 40–70

    Article  Google Scholar 

  • Nies D H. 1992. Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid, 27(1): 17–28

    Article  Google Scholar 

  • Norton J M, Klotz M G, Stein L Y, et al. 2008. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Applied and Environmental Microbiology, 74(11): 3559–3572

    Article  Google Scholar 

  • Rowden A A, Dower J F, Schlacher T A, et al. 2010. Paradigms in seamount ecology: fact, fiction and future. Marine Ecology, 31(Supp): 226–241

    Article  Google Scholar 

  • Santelli C M, Orcutt B N, Banning E, et al. 2008. Abundance and diversity of microbial life in ocean crust. Nature, 453(7195): 653–656

    Article  Google Scholar 

  • Santelli C M, Webb S M, Dohnalkova A C, et al. 2011. Diversity of Mn oxides produced by Mn(II)-oxidizing fungi. Geochimica et Cosmochimica Acta, 75(10): 2762–2776

    Article  Google Scholar 

  • Schauer R, Bienhold C, Ramette A, et al. 2009. Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean. The ISME Journal, 4(2): 159–170

    Article  Google Scholar 

  • Schenau S J, De Lange G J. 2001. Phosphorus regeneration vs. burial in sediments of the Arabian Sea. Marine Chemistry, 75(3): 201–217

    Article  Google Scholar 

  • Schlacher T A, Rowden A A, Dower J F, et al. 2010. Seamount science scales undersea mountains: new research and outlook. Marine Ecology, 31(Supp): 1–13

    Article  Google Scholar 

  • Staudigel H, Koppers A A P, Plank T A, et al. 2010. Seamounts in the subduction factory. Oceanography, 23(1): 176–181

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10): 2731–2739

    Article  Google Scholar 

  • Tatusov R L, Galperin M Y, Natale D A, et al. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research, 28(1): 33–36

    Article  Google Scholar 

  • Tebo B M, Bargar J R, Clement B G, et al. 2004. Biogenic manganese oxides: properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences, 32: 287–328

    Article  Google Scholar 

  • Verlaan P A. 1992. Benthic recruitment and manganese crust formation on seamounts. Marine Biology, 113(1): 171–174

    Article  Google Scholar 

  • Walker C B, de la Torre J R, Klotz M G, et al. 2010. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proceedings of the National Academy of Sciences of the United States of America, 107(19): 8818–8823

    Article  Google Scholar 

  • Wang Xiaohong, Müller W E G. 2009. Marine biominerals: perspectives and challenges for polymetallic nodules and crusts. Trends in Biotechnology, 27(6): 375–383

    Article  Google Scholar 

  • Wang Xiaohong, Schlossmacher U, Natalio F, et al. 2009. Evidence for biogenic processes during formation of ferromanganese crusts from the Pacific Ocean: implications of biologically induced mineralization. Micron, 40(5–6): 526–535

    Article  Google Scholar 

  • Wang Xiaohong, Wiens M, Schröder H, et al. 2011. Molecular biomineralization: toward an understanding of the biogenic origin of polymetallic nodules, seamount crusts, and hydrothermal vents. In: Müller W E G, ed. Molecular Biomineralization. Berlin Heidelberg: Springer, 77–110

    Chapter  Google Scholar 

  • Wedepohl K H. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7): 1217–1232

    Article  Google Scholar 

  • Wessel P, Sandwell D T, Kim S S. 2010. The global seamount census. Oceanography, 23(1): 24–33

    Article  Google Scholar 

  • Wright J J, Konwar K M, Hallam S J. 2012. Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol, 10(6): 381–394

    Google Scholar 

  • Wu Yuehong, Liao Li, Wang Chunsheng, et al. 2013. A comparison of microbial communities in deep-sea polymetallic nodules and the surrounding sediments in the Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 79: 40–49

    Article  Google Scholar 

  • Xu Meixiang, Wang Peng, Wang Fengping, et al. 2005. Microbial diversity at a deep-sea station of the Pacific nodule province. Biodiversity & Conservation, 14(14): 3363–3380

    Article  Google Scholar 

  • Yesson C, Clark M R, Taylor M L, et al. 2011. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep-Sea Research Part I: Oceanographic Research Papers, 58(4): 442–453

    Article  Google Scholar 

  • Zhang Hui, Sekiguchi Y, Hanada S, et al. 2003. Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. International Journal of Systematic and Evolutionary Microbiology, 53(4): 1155–1163

    Article  Google Scholar 

  • Zhang Fuyuan, Zhang Weiyan, Zhu Kechao, et al. 2008. Distribution characteristics of cobalt-rich ferromanganese crust resources on submarine seamounts in the Western Pacific. Acta Geologica Sinica, 82(4): 796–803

    Google Scholar 

  • Zhao Qiyuan. 1988. Ocean Geochemistry. Beijing: The Geological Publishing House

    Google Scholar 

  • Zhu Wenhan, Lomsadze A, Borodovsky M. 2010. Ab initio gene identification in metagenomic sequences. Nucleic Acids Research, 38(12): e132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewei Xu.

Additional information

Foundation item: China Ocean Mineral Resources R & D Association COMRA Special Foundation under contract Nos DY125-15-R-03 and DY125-13-E-01; the National Natural Science Foundation of China under contract No. 41276173; the Zhejiang Provincial Natural Science Foundation of China under contract No. LQ13D060002; the Scientific Research Fund of the Second Institute of Oceanography, SOA under contract No. JT1305.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Y., Cheng, H., Post, A.F. et al. Ecological functions of uncultured microorganisms in the cobalt-rich ferromanganese crust of a seamount in the central Pacific are elucidated by fosmid sequencing. Acta Oceanol. Sin. 34, 92–113 (2015). https://doi.org/10.1007/s13131-015-0650-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-015-0650-7

Key words

Navigation