Skip to main content
Log in

Simulation of urban climate with high-resolution WRF model: A case study in Nanjing, China

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, urban climate in Nanjing of eastern China is simulated using 1-km resolution Weather Research and Forecasting (WRF) model coupled with a single-layer Urban Canopy Model. Based on the 10-summer simulation results from 2000 to 2009 we find that the WRF model is capable of capturing the high-resolution features of urban climate over Nanjing area. Although WRF underestimates the total precipitation amount, the model performs well in simulating the surface air temperature, relative humidity, and precipitation frequency and inter-annual variability. We find that extremely hot events occur most frequently in urban area, with daily maximum (minimum) temperature exceeding 36°C (28°C) in around 40% (32%) of days. Urban Heat Island (UHI) effect at surface is more evident during nighttime than daytime, with 20% of cases the UHI intensity above 2.5°C at night. However, The UHI affects the vertical structure of Planet Boundary Layer (PBL) more deeply during daytime than nighttime. Net gain for latent heat and net radiation is larger over urban than rural surface during daytime. Correspondingly, net loss of sensible heat and ground heat are larger over urban surface resulting from warmer urban skin. Because of different diurnal characteristics of urban-rural differences in the latent heat, ground heat and other energy fluxes, the near surface UHI intensity exhibits a very complex diurnal feature. UHI effect is stronger in days with less cloud or lower wind speed. Model results reveal a larger precipitation frequency over urban area, mainly contributed by the light rain events (< 10 mm d−1). Consistent with satellite dataset, around 10–20% more precipitation occurs in urban than rural area at afternoon induced by more unstable urban PBL, which induces a strong vertical atmospheric mixing and upward moisture transport. A significant enhancement of precipitation is found in the downwind region of urban in our simulations in the afternoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bornstein, R. D., 1968: Observations of the urban heat island effects in New York City. J. Appl. Meteorol., 7, 575–582.

    Article  Google Scholar 

  • Braham, R. R., 1979: Comments on “Urban, topographic and diurnal effects on rainfall in the St. Louis region”. J. Appl. Meteorol., 18, 371–374.

    Article  Google Scholar 

  • Bukovsky, M. S., and D. J. Karoly, 2009: Precipitation simulations using WRF as a nested regional climate model. J. Appl. Meteor. Climatol., 48, 2152–2159, doi:10.1175/2009JAMC2186.1.

    Article  Google Scholar 

  • Burian, S. J., and J. M. Shepherd, 2005: Effects of urbanization on the diurnal rainfall pattern in Houston. Hydrol. Process, 19, 1089–1103.

    Article  Google Scholar 

  • Changnon, S. A., R. G. Semonin, and F. A. Huff, 1976: A hypothesis for urban rainfall anomalies. J. Appl. Meteorol., 15, 544–560.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569–585.

    Article  Google Scholar 

  • —, M. Tewari, H. Kusaka, and T. T. Warner, 2006: Current status of urban modeling in the community Weather Research and Forecast (WRF) model. Joint with Sixth Symposium on the Urban Environment and AMS Forum on Managing our Physical and Natural Resources: Successes and Challenges, Atlanta, GA, USA. Amer. Meteor. Soc., CDROM. J1.4.

  • Chin, H.-N. S., M. J. Leach, G. A. Sugiyama, J. M. Leone, H. Walker, J. S. Nasstrom, and M. J. Brown, 2005: Evaluation of an urban canopy parameterization in a mesoscale model using VTMX and URBAN 2000 data. Mon. Wea. Rev., 133, 2043–2068.

    Article  Google Scholar 

  • Clarke, J. F., 1969: Nocturnal urban boundary layer over Cincinnati, Ohio. Mon. Wea. Rev., 97, 582–589.

    Article  Google Scholar 

  • Coutts, A. M., J. Beringer, and N. J. Tapper, 2007: Impact of increasing urban density on local climate: Spatial and temporal variation in the surface energy balance in Melbourne, Australia. J. Appl. Meteor. Climatol., 46, 477–493.

    Article  Google Scholar 

  • Grimmond, C. S. B, and Coauthors, 2010: The International Urban Energy Balance Models Comparison Project: First Results from Phase 1. J. Appl. Meteor. Climatol., 49, 1268–1292.

    Article  Google Scholar 

  • —, and Coauthors, 2011: Initial results from Phase 2 of the international urban energy balance model comparison. Int. J. Climatol., 31, 244–272.

    Article  Google Scholar 

  • Hamdi, R., A. Deckmyn, P. Termonia, G. R. Demarée, P. Baguis, S. Vanhuysse, and E. Wolff, 2009: Effects of historical urbanization in the Brussels Capital region on surface air temperature time series: A model study. J. Appl. Meteor. Climatol., 48, 2181–2196.

    Article  Google Scholar 

  • Hand, L. M., and J. M. Shepherd, 2009: An investigation of warm-season spatial rainfall variability in Oklahoma City: Possible linkages to urbanization and prevailing wind. J. Appl. Meteor. Climatol., 48, 251–269.

    Article  Google Scholar 

  • Holt, T., and J. Pullen, 2007: Urban canopy modeling of the New York City metropolitan area: A comparison and validation of single- and multilayer parameterizations. Mon. Wea. Rev., 135, 1906–1930.

    Article  Google Scholar 

  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

    Google Scholar 

  • —, J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120.

    Article  Google Scholar 

  • —, Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.

    Article  Google Scholar 

  • Huang, L., H. Huang, D. Xiang, J. Zhu, and J. Li, 2007: The diurnal change of air temperature in four types of land cover and urban heat island effect in Nanjing, China (in Chinese). Ecology and Environment, 16, 1411–1420.

    Google Scholar 

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55.

    Article  Google Scholar 

  • Inoue, T., and F. Kimura, 2004: Urban effects on low-level clouds around the Tokyo metropolitan area on clear summer days. Geophys. Res. Lett., 31, L05103, doi:10.1029/2003GL018908.

    Article  Google Scholar 

  • Jones, P. D., P. M. Kelly, and C. M. Goodess, 1989: The effect of urban warming on the northern hemisphere temperature average. J. Climate, 2, 285–290.

    Article  Google Scholar 

  • Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol., 43, 170–181.

    Article  Google Scholar 

  • Khemani, L. T., and B. V. Ramana Murty, 1973: Rainfall variations in an urban industrial region. J. Appl. Meteorol., 12, 187–194.

    Article  Google Scholar 

  • Kim, Y.-H., and J.-J. Baik, 2005: Spatial and temporal structure of the urban heat island in Seoul. J. Appl. Meteorol., 44, 591–605, doi:10.1175/JAM2226.1.

    Article  Google Scholar 

  • Kusaka, H., and F. Kimura, 2004a: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 67–80.

    Article  Google Scholar 

  • —, and —, 2004b: Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using a mesoscale model coupled with an urban canopy model. J. Appl. Meteorol., 43, 1899–1910.

    Article  Google Scholar 

  • —, H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple singlelayer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329–358.

    Article  Google Scholar 

  • —, F. Kimura, K. Nawata, T. Hanyu, and Y. Miya, 2009: The chink in the armor: Questioning the reliability of conventional sensitivity experiments in determining urban effects on precipitation patterns. proc., 7th International Conference for urban Climate, Yokohama, Japan, Tokyo Institute of Technology, B12-2.

  • —, T. Takata, and Y. Takane, 2010: Reproducibility of regional climte in central Japan using the 4-km resolution WRF model. SOLA, 6, 113–116, doi:10.2151/sola.2010-029.

    Article  Google Scholar 

  • Martilli, A., 2002: Numerical study of urban impact on boundary layer structure: Sensitivity to wind speed, urban morphology, and rural soil moisture. J. Appl. Meteorol., 41, 1247–1266.

    Article  Google Scholar 

  • Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357–397.

    Article  Google Scholar 

  • Miao, S., F. Chen, M. A. Lemone, M. Tewari, Q. Li, and Y. Wang, 2009: An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteor. Climatol., 48, 484–501.

    Article  Google Scholar 

  • Mote, T. L., M. C. Lacke, and J. M. Shepherd, 2007: Radar signatures of the urban effect on precipitation distribution: A case study for Atlanta, Georgia. Geophys. Res. Lett., 34, L20710, doi:10.1029/2007GL031903.

    Article  Google Scholar 

  • Oke, T. R., 1981: Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. Int. J. Climatol., 1, 237–254.

    Article  Google Scholar 

  • —, 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 1–24.

    Google Scholar 

  • Oleson, K. W., G. B. Bonan, J. Feddema, and M. Vertensten, 2008: An urban parameterization for a global climate model. Part II: Sensitivity to input parameters and the simulated urban heat island in offline simulations. J. Appl. Meteor. Climatol., 47, 1061–1076.

    Article  Google Scholar 

  • Ren, G., Y. Zhou, Z. Chu, J. Zhou, A. Zhang, J. Guo, and X. Liu, 2008: Urbanization effects on observed surface air temperature trends in north China. J. Climate, 21, 1333–1348.

    Article  Google Scholar 

  • Roy, S. S., and F. Yuan, 2009: Trends in extreme temperatures in relation to urbanization in the twin cities Metropolitan area, Minnesota. J. Appl. Meteor. Climatol., 48, 669–679.

    Article  Google Scholar 

  • Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9, 1–27. [Available online at http://EarthInteractions.org.]

    Article  Google Scholar 

  • Shou, Y.-X., and D.-L. Zhang, 2010: Impact of environment flows on the daytime urban boundary layer structures over the Baltimore metropolitan region. Atmos. Sci. Lett., 11, 1–6.

    Google Scholar 

  • Shreffler, J. H., 1978: Detection of centripetal heat-island circulations from tower data in St. Louis. Bound.-Layer Meteor., 15, 229–242.

    Article  Google Scholar 

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X-Y. Huang, W. Wang, and J. G. Powers, 2008: A Description of the Advanced Research WRF Version 3, NCAR Technical Note, NCAR/TN-475+STR, 123 pp.

  • Souch, C., and S. Grimmond, 2006: Applied climatology: Urban climate. Prog. Phys. Geog., 30, 270–279.

    Article  Google Scholar 

  • Tewari M., F. Chen, H. Kusaka, and S. Miao, 2007: Coupled WRF/Unied Noah/urban-canopy modeling system. NCAR WRF Documentation, NCAR, Boulder, 1–22.

    Google Scholar 

  • Thanh Ca, V., Y. Ashie, and T. Asaeda, 2002: A k-ɛ turbulence closure model for the atmospheric boundary layer including urban canopy. Bound.-Layer Meteor., 102, 459–490.

    Article  Google Scholar 

  • Trusilova, K., M. Jung, and G. Churkina, 2009: On climate impacts of a potential expansion of urban land in Europe. J. Appl. Meteor. Climatol., 48, 1971–1980.

    Article  Google Scholar 

  • Uno, I., S. Wakamatsu, H. Ueda, and A. Nakamura, 1988: An observational study of the structure of the nocturnal urban boundary layer. Bound.-Layer Meteor., 45, 59–82.

    Article  Google Scholar 

  • World Resources Institute, 1996: World Resources 1996-97: The urban environment. World Resources Institute, 400 pp. [Available online at http://www.wri.org/publication/world-resources-1996-97-urbanenvironment.]

  • Yu, R., T. Zhou, A. Xiong, Y. Zhu, and J. Li, 2007: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett., 34, L01704, doi:10.1029/2006GL028129.

    Article  Google Scholar 

  • Zhou, T., R. Yu, H. Chen, A. Dai, Y. Pan, 2008: Summer Precipitation Frequency, Intensity, and Diurnal Cycle over China: A Comparison of Satellite Data with Rain Gauge Observations. J. Climate, 21, 3997–4010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, B., Zhang, Y. & Qian, Y. Simulation of urban climate with high-resolution WRF model: A case study in Nanjing, China. Asia-Pacific J Atmos Sci 48, 227–241 (2012). https://doi.org/10.1007/s13143-012-0023-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-012-0023-5

Key words

Navigation