Skip to main content
Log in

Stable isotope geochemistry of travertines from northern Urumieh-Dokhtar volcano-plutonic belt, Iran

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

In Iran, almost all major travertine deposits with NW–SE trend are exposed in Urumieh-Dokhtar volcano-plutonic belt. In this study, morphology of travertine, source of CO2, and classification of travertine were investigated using geochemistry of carbon dioxide, stable carbon and oxygen isotopic analysis, SEM images and thin sections. Morphology of travertine in the study area includes mound and cascade. Stable carbon and oxygen isotope values of the north Urumieh-Dokhtar volcano-plutonic belt travertines range between 1.46 and 11.71‰ (VPDB) and − 6.08 and − 10.21‰ (VPDB), respectively. The high δ13C values suggest a contribution of CO2 liberated by thermometamorphic decarbonation besides its magmatic origin. Consequently, these travertines are classified as belonging to the thermogene category. A probable reason for the observed high carbon isotope composition in these deposits may be CO2 consumption as suggested by the presence of bacteria and diatom activities, verified by SEM images. Pisoid, crystalline crust and pebbly lithofacies were observed. The stable isotope compositions were compared to travertines around the world. Similarities in lithofacies and morphology exist between northern Urumieh-Dokhtar volcano-plutonic belt and travertines of Turkey and Spain. The Iranian travertines are located in areas with volcanic activity. Obviously, the geothermal system remained active throughout the late Quaternary to present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int J Earth Sci 94:401–419

    Article  Google Scholar 

  • Alavi M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am J Sci 304:1–20

    Article  Google Scholar 

  • Alavi M (2007) Structures of the Zagros fold-thrust belt in Iran. Am J Sci 307:1064–1095

    Article  Google Scholar 

  • Alcicek MC, Kazanci N, Ozkul M (2005) Multiple rifting pulses and sedimentation pattern in the Cameli Basin, southwestern Anatolia, Turkey. Sed Geol 173:409–431

    Article  Google Scholar 

  • Altunel E, Hancock PL (1993) Morphology and structural setting of Quaternary travertines at Pamukkale, Turkey. Geol J 28:335–346

    Article  Google Scholar 

  • Andrews JE, Riding R (2001) Depositional facies and aqueous–solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, USA) discussion. J Sediment Res 71:496–497

    Article  Google Scholar 

  • Anzalone E, Ferreri V, Sprovieri M, D’Argenio B (2007) Travertines as hydrologic archives: the case of the Pontecagnano deposits (southern Italy). Adv Water Resour 30:2159–2175

    Article  Google Scholar 

  • Banks VJ, Jones PF (2012) Hydrogeological significance of secondary terrestrial carbonate deposition in karst environments. In: Kazemi GA (ed) Hydrogeology: a global perspective. InTech, London, pp 43–78

    Google Scholar 

  • Barth AJ (2012) Crystal Geyser, Utah: active travertine deposits of a cold-water carbon dioxide-driven geyser and related ancient deposits of the little grand wash fault. MS Thesis, the Faculty of the Department of Earth and Atmospheric Sciences, University of Houston

  • Berberian M, Gp King (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Berberian F, Muir ID, Pankhurst RJ, Berberian M (1982) Late cretaceous and early miocene andean type plutonic activity in northern Makran and central Iran. J Geol Soc 139:605–614

    Article  Google Scholar 

  • Chafetz HS, Folk RL (1984) Travertines: depositional morphology and the bacterially constructed constituents. J Sediment Petrol 54:289–316

    Google Scholar 

  • Chafetz HS, Guidry SA (1999) Bacterial shrubs, crystal shrubs, and ray-crystal crusts: bacterially induced vs. a biotic mineral precipitation. Sed Geol 128:57–74

    Article  Google Scholar 

  • Chafetz HS, Lawrence JR (1994) Stable isotopic variability within modern travertines. Geographie physique et Quaternaire 48:257–273

    Article  Google Scholar 

  • Davaud E, Girardclos S (2001) Recent freshwater ooids and oncoids from western Lake Geneva (Switzerland): indications of a common organically mediated origin. J Sediment Res 71:423–429

    Article  Google Scholar 

  • Di Benedetto F, Montegrossi G, Minissale A, Pardi LA, Romanelli M, Tassi F, Delgado Huertas A, Pampin EM, Vaselli O, Borrini D (2011) Biotic and inorganic control on travertine deposition at Bullicame 3 spring (Viterbo, Italy): a multidisciplinary approach. Geochim Cosmochim Acta 75:4441–4455

    Article  Google Scholar 

  • Folk RL (1994) Interaction between bacteria, nannobacteria and mineral precipitation in hot springs of Central Italy. Geographie Physique et Quaternaire 48:233–246

    Article  Google Scholar 

  • Folk RL, Chafetz HS (1983) Pisoliths (pisoids) in quaternary travertines of Tivoli, Italy. In: Peryt TM (ed) Coated Grains. Springer, Berlin, New York

  • Ford TD, Pedley HM (1996) A review of tufa and travertine deposits of the world. Earth Sci Rev 41:117–175

    Article  Google Scholar 

  • Fouke BW (2001) Depositional facies and aqueous–solid geochemistry of the travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, USA). J Sediment Res 70:497–500

    Article  Google Scholar 

  • Fouke BW (2011) Hot-spring Systems Geobiology: abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA. Sedimentology 58:170–219

    Article  Google Scholar 

  • Fouke BW, Farmer JD, Des Marais DJ, Pratt L, Sturchio NC, Burns PC, Discipulo MK (2000) Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs(angel trrace, mammoth hot springs, Yellowstone national park, USA). Int J Sedim Res 70:565–585

    Article  Google Scholar 

  • Gandin A, Capezzuoli E (2014) Travertine: distinctive depositional fabrics of carbonates from thermal spring systems. J Sedimentol 61:264–290

    Article  Google Scholar 

  • GSI (Geological Survey of Iran) (1999) Geology maps of Ghorveh and Kabudar Press, Ahang regions, western Iran: a digitized final map at 1:100,000 scale, Teheran

  • Guo L, Riding R (1994) Origin and diagenesis of Quaternary travertine shrub fabrics. Rapolono Terme, Central Italy, Sedimentology 41:499–520

    Google Scholar 

  • Guo L, Riding R (1998) Hot-spring travertine facies and sequences, late pleistocen, rapolano term, Italy. J Sedimentol 45:163–180

    Article  Google Scholar 

  • Guo L, Andrews J, Riding R, Dennis P, Dresser Q (1996) Possible microbial effects on stable carbon isotopes in hot-spring travertines. J Sediment Res 66:468–473

    Article  Google Scholar 

  • Hoefs J (1997) Stable isotope geochemistry. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Hoefs J (2004) Stable isotope geochemistry, 5th edn. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Inskeep WP, McDermott TR (2005) Geothermal biology and geochemistry in Yellowstone National Park. Proceeding of the Thermal Biology Institute Workshop, Yellowstone National Park, WY, USA

  • Jones B, Renaut RW (2008) Cyclic development of large, complex, calcite dendrite crystals in the Clinton travertine, Interior British Columbia, Canada. Sed Geol 203:17–35

    Article  Google Scholar 

  • Jones B, Renaut RW (2010) 0 Calcareous spring deposits in continental settings. Dev Sedimentol 61:177–224

    Article  Google Scholar 

  • Jones B, Renaut RW, Owenr B, Torfason H (2005) Growth patterns and implications of complex dendrites in calcite travertines from Lýsuhóll, Snæfellsnes, Iceland. Sedimentology 52:1277–1301

    Google Scholar 

  • Kalender L, Öztekin Ö, İnceöz M, Çetindağ B, Yildirim V (2015) Geochemistry of travertine deposits in the Eastern Anatolia District: an example of the Karakoçan-Yoğunağaç (Elazığ) and Mazgirt-Dedebağ (Tunceli) travertines, Turkey. Turkish J Earth Sci 24:607–626

    Article  Google Scholar 

  • Kele S, Vaselli O, Szabo C, Minissale A (2003) Stable isotope geochemistry of Pleistocene travertine from Budakalasz (Buda Mts., Hungary). Acta Geologica Hungarica J 46:161–171

    Article  Google Scholar 

  • Kele S, Demény A, Siklósy Z, Németh T, Mária T, Kovács MB (2008) Chemical and stable isotope compositions of recent hot-water travertines and associated thermal waters, from Egerszalók, Hungary: depositional facies and non-equilibrium fractionations. Sed Geol 211:53–72

    Article  Google Scholar 

  • Kele S, Özkul M, Fórizs I, Gökgöz A, Baykara MO, Alçiçek MC, Németh T (2011) Stable isotope geochemical study of Pamukkale travertines: new evidences of low temperature non-equilibrium calcite-water fractionation. Sed Geol 238:191–212

    Article  Google Scholar 

  • Keshavarzi B, Moore F, Mosaferi M, Rahmani F (2011) The source of natural arsenic contamination in groundwater, west of Iran. Water Qual Exposure Health J 3:135–147

    Article  Google Scholar 

  • Khoiee N, Ghorbani M, Tajbakhsh P (1999) Ore of copper in Iran. Geological Survey and Mineral Exploration of Iran. (In Persian)

  • Minissale A (2004) Origin, transport and discharge of CO2 in central Italy. Earth Sci Rev 66:89–141

    Article  Google Scholar 

  • Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan zone, western Iran. J Asian Earth Sci 21:397–412

    Article  Google Scholar 

  • O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558

    Article  Google Scholar 

  • Ozkul M, Varol B, Alçiçek MC (2002) Depositional environments and petrography of Denizli travertines. Bull Miner Res Explor 125:13–29

    Google Scholar 

  • Ozkul M, Kele S, Gokgoz A, Shen CC, Jones B, Baykara MO et al (2013) Comparison of the quaternary travertine sites in the Denizli extensional basin based on their depositional and geochemical data. Sed Geol 294:179–204

    Article  Google Scholar 

  • Ozkul M, Gokgoz A, Kele S, Baykara MO, Shen CC, Chang YW, Kaya A, Hançer M, Aratman C, Akin T, Orü Z (2014) Sedimentological and geochemical characteristics of a fluvial travertine: a case from the eastern Mediterranean region. Sedimentology 61:291–318

    Article  Google Scholar 

  • Panichi C, Torgiorgi E (1976) Carbon isotopic composition of CO2 from springs, fumaroles, mofettes and travertines of central and southern Italy: a preliminary prospection method of geothermal area. Proc. 2nd UN Symp. On the Develop and Use of Geotherm. Energy, 20–29 May 1975, San Francisco, USA, 815–825

  • Pasvanoglu S, Chandrasekharam D (2011) Hydrogeochemical and isotopic study of thermal and mineralized waters from the Nevs_ehir (Kozakli) area, Central Turkey. J Volcanol Geoth Res 202:241–250

    Article  Google Scholar 

  • Pentecost A (1993) British travertines: a review. Proc Geol Assoc 104:23–39

    Article  Google Scholar 

  • Pentecost A (1995) The quaternary travertine deposits of europe and asia Minor. Quatern Sci Rev 14:1005–1028

    Article  Google Scholar 

  • Pentecost A (2005) Travertine. Springer, Berlin

    Google Scholar 

  • Pentecost A, Viles HA (1994) A review and reassessment of travertine classification. Géog Phys Quatern 48:305–314

    Google Scholar 

  • Pentecost A, Whitton BA (2000) Limestones. In: Whitton BA, Potts M (eds) The ecology of Cyanobacteria. Kluwer, Amsterdam

    Google Scholar 

  • Pentecost A, Jones B, Renaut W (2003) What is a hot spring? Can J Earth Sci 40:1443–1446

    Article  Google Scholar 

  • Pichler T, Veizer J (2004) The precipitation of aragonite from shallow-water hydrothermal fluids in a coral reef, Tutum Bay, Ambitle Island, Papua New Guinea. Chem Geol 207:31–45

    Article  Google Scholar 

  • Prado-Pérez AJ, Hueras AD, Crespo MT, Martín Sánchez A, Pérez Del Villar L (2013) Late Pleistocene and Holocene mid-latitude palaeoclimatic and palaeoenvironmental reconstruction: an approach based on the isotopic record from a travertine formation in the guadix-baza basin, Spain. Geol Mag 150(4):602–625

    Article  Google Scholar 

  • Rahmani Javanmard S, Tutti F, Omidian S, Ranjbaran M (2012) Mineralogy and stable isotope geochemistry of the Ab Ask travertines in Damavand geothermal field, Northeast Tehran, Iran. Cent Eur Geol 55:187–212

    Article  Google Scholar 

  • Rainey DK, Jones B (2009) Abiotic versus biotic controls on the development of the Fairmont Hot Springs carbonate deposit, British Columbia, Canada. Sedimentology 56:1832–1857

    Article  Google Scholar 

  • Ricci M, Bertini A, Capezzuoli E, Horvatinčić N, Andrews J, Fauquette S, Fedi M (2015) Palynological investigation of a Late Quaternary calcareous tufa and travertine deposit: the case study of Bagnoli in the Valdelsa Basin (Tuscany, central Italy). Rev Palaeobot Palynol 218:184–197

    Article  Google Scholar 

  • Ricou LE (1994) Tethys reconstructed: plates continental fragments and their boundaries since 260 Ma from Central America to south-eastern Asia. Acta Geodynamica et Geomaterialia J 7:169–218

    Article  Google Scholar 

  • Rodriguez-Berriguete A, Alonso-Zarza AM, Cabrera MC, Rodriguez-Gonzalez A (2012) The Azuaje travertine: an example of aragonite deposition in a recent volcanic setting, N Gran Canaria Island, Spain. Sed Geol 277–278:61–71

    Article  Google Scholar 

  • Ronchi P, Cruciani F (2015) Continental carbonates as a hydrocarbon reservoir, an analog case study from the travertine of Saturnia, Italy. AAPG Bull 99:711–734

    Article  Google Scholar 

  • Roshanak R, Zarasvandi A, Gratzer R (2014) Investigation of source and lithofacies of travertine deposits in Targh and Vartoon areas Isfahan province: By using petrography and stable isotopes. 18 Conference of Geological Society of Iran. (In Persian)

  • Sant’Anna LG, Riccomini C, Rodrigues-Francisco BH, Sial AN, Carvalho MD, Moura CAV (2004) The Paleocene travertine system of the Itabora basin, Southeastern Brazil. J South Am Earth Sci 18:11–25

    Article  Google Scholar 

  • Selim HH, Yanik G (2009) Development of the Cambazlı (Turgutlu/MANISA) fissure-ridge-type travertine and relationship with active tectonics, Gediz Graben, Turkey. Quatern Int 199:157–163

    Article  Google Scholar 

  • Sierralta M, Kele S, Melcher F, Hambach U, Reinders J, Van Geldern R, Frechen M (2010) Uranium series dating of travertine from sutto: implications for reconstruction of environmental change in Hungary. Quat Int J 222:178–193

    Article  Google Scholar 

  • Sun H, Liu Z (2010) Wet/dry seasonal and spatial variations in the d13C and d18O values of the modern endogenic travertine at Baishuitai, Yunnan, SW China and their paleoclimatic and paleoenvironmental implications. Geochim Cosmochim Acta 74:1016–1029

    Article  Google Scholar 

  • Sun SY, Dong F, Ehrlich H, Zhao X, Liu M, Dai Q, Li Q, An D, Dong H (2014) Metabolic Influence of Psychrophilic Diatoms on Travertines at the Huanglong Natural Scenic District of China. Int J Environ Res Public Health 11:13084–13096

    Article  Google Scholar 

  • Uysal IT, Feng Y, Zhao J, Altunel E, Weatherley D, Karabacak V, Cengiz O, Golding SD, Lawrence MG, Collerson KD (2007) U-Series dating and geochemical tracing of late Quaternary travertine in coseismic fissures. Earth Planet Sci Lett 257:450–462

    Article  Google Scholar 

  • Uysal IT, Feng Y, Zhao J, Isik V, Nuriel P, Golding S (2009) Hydrothermal CO2 degassing in seismically active zones during the late Quaternary. Chem Geol 265:442–454

    Article  Google Scholar 

  • Viles HA, Pentecost A (2007) Tufa and Travertine. In: Nash DJ, McLaren SJ (eds) Geochemical Sediments and Landscapes. Blackwell Publishing Ltd, Oxford

    Google Scholar 

  • Yoshimura K, Liu Z, Cao J, Yuan D, Inokura Y, Noto M (2004) Deep source CO2 in natural waters and its role in extensive tufa deposition in the Huanglong Ravines, Sichuan, China. Chem Geol 205:141–153

    Article  Google Scholar 

  • Zarasvandi A, Liaghat S, Zentilli M (2005) Geology of the Darreh-Zerreshk and Ali-Abad porphyry copper deposits, central Iran. Int Geol Rev 47:620–646

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Zarasvandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarasvandi, A., Roshanak, R., Gratzer, R. et al. Stable isotope geochemistry of travertines from northern Urumieh-Dokhtar volcano-plutonic belt, Iran. Carbonates Evaporites 34, 869–881 (2019). https://doi.org/10.1007/s13146-017-0405-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-017-0405-y

Keywords

Navigation