Skip to main content

Advertisement

Log in

Estimating Occupancy in Large Landscapes: Evaluation of Amphibian Monitoring in the Greater Yellowstone Ecosystem

  • Article
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Monitoring of natural resources is crucial to ecosystem conservation, and yet it can pose many challenges. Annual surveys for amphibian breeding occupancy were conducted in Yellowstone and Grand Teton National Parks over a 4-year period (2006–2009) at two scales: catchments (portions of watersheds) and individual wetland sites. Catchments were selected in a stratified random sample with habitat quality and ease of access serving as strata. All known wetland sites with suitable habitat were surveyed within selected catchments. Changes in breeding occurrence of tiger salamanders, boreal chorus frogs, and Columbia-spotted frogs were assessed using multi-season occupancy estimation. Numerous a priori models were considered within an information theoretic framework including those with catchment and site-level covariates. Habitat quality was the most important predictor of occupancy. Boreal chorus frogs demonstrated the greatest increase in breeding occupancy at the catchment level. Larger changes for all 3 species were detected at the finer site-level scale. Connectivity of sites explained occupancy rates more than other covariates, and may improve understanding of the dynamic processes occurring among wetlands within this ecosystem. Our results suggest monitoring occupancy at two spatial scales within large study areas is feasible and informative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams MJ, Pearl CA, Galvan S, McCreary B (2011) Non-native species impacts on pond occupancy by an anuran. Journal of Wildlife Management 75:30–35

    Article  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov B, Czaki F (eds) Proceedings of the 2nd international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Bailey LL, Nichols JD (2009) Capture-mark-recapture, removal, and occupancy models. In: Dodd CK Jr (ed) Amphibian ecology and conservation: a handbook of techniques. Oxford University Press, New York, pp 447–463

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Bury BB, Corn PS, Dodd DK, McDiamid RW, Scott NJ (1995) Amphibians. In: Laroe ET, Farris GS, Pucket CE, Dorna PD, Mac MJ (eds) Our living resources: a report to the Nation on the distribution, abundance, and health of US plants, animals, and ecosystems. US Department of Interior, Washington, DC, pp 124–126

    Google Scholar 

  • Church DR (2008) Role of current versus historical hydrology in amphibian species turnover within local pond communities. Copeia 2008:115–125

    Article  Google Scholar 

  • Corn PS (2007) Amphibians and disease: implications for conservation in the Greater Yellowstone Ecosystem. Yellowstone Science 15:11–16

    Google Scholar 

  • Corn PS, Hossack BR, Muths E, Patla DA, Peterson CR, Gallant AL (2005a) Status of amphibians on the Continental Divide: surveys on a transect from Montana to Colorado, USA. Alytes 22:85–94

    Google Scholar 

  • Corn PS, Muths E, Adams MJ, Dodd CK (2005b) The United States geological survey’s amphibian research and monitoring initiative. Alytes 22:65–71

    Google Scholar 

  • Cowardin LM, Carter V, Golet FC, Laroe ET (1979) Classification of wetlands and deepwater habitats of the United States, U.S. Fish and Wildlife Service, Washington, DC.

  • Crump ML, Scott NS Jr (1994) Visual encounter surveys. In: Heyer WR, Donnelly MA, McDiarmid RW, Hayek LAC, Foster MS (eds) Measuring and monitoring biological diversity: standard methods for amphibians. Smithsonian Institution Press, Washington, DC, pp 84–92

    Google Scholar 

  • Despain DG (1990) Yellowstone vegetation: consequences of environment and history in a natural setting. Roberts Rinehart, Boulder

    Google Scholar 

  • Drost CA, Fellers GM (1996) Collapse of a regional frog fauna in the Yosemite area of the California Sierra Nevada, USA. Conservation Biology 10:414–425

    Article  Google Scholar 

  • Elliott CR, Hektner MM (2000) Wetland resources of Yellowstone National Park. United States Fish and Wildlife Service, Yellowstone National Park, Wyoming, p 32

    Google Scholar 

  • Fancy SG, Gross JE, Carter SL (2009) Monitoring the condition of natural resources in US National Parks. Environmental Monitoring and Assessment 151:161–174

    Article  PubMed  CAS  Google Scholar 

  • Gorman TA, Haas CA, Bishop DC (2009) Factors related to occupancy of breeding wetlands by flatwoods salamander larvae. Wetlands 29:323–329

    Article  Google Scholar 

  • Green DM (1997) Perspectives on amphibian population declines: defining the problem and searching for answers. In: Green GM (ed). Herpetological conservation, Vol. I: amphibians in decline. Canadian studies of a global problem, Society for the Study of Amphibians and Reptiles, St. Louis, pp 291–308

  • Green DM (2005) Designatable units for status assessment of endangered species. Conservation Biology 19:1813–1820

    Article  Google Scholar 

  • Hamer AJ, Mahoney MJ (2010) Rapid turnover in site occupancy of a pond-breeding frog demonstrates the need for landscape-level management. Wetlands 30:287–299

    Article  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Hartel T, Ollerer K (2009) Local turnover and factors influencing the persistence of amphibians in permanent ponds from the Saxon landscapes of Transylvania. Northwestern Journal of Zoology 5:40–52

    Google Scholar 

  • Hossack BR, Corn PS (2007) Responses of pond-breeding amphibians to wildfire: short-term patterns in occupancy and colonization. Ecological Applications 17:1403–1410

    Article  PubMed  Google Scholar 

  • Koch ED, Peterson CR (1995) Amphibian and reptiles of Yellowstone and Grand Teton National Parks. University of Utah Press, Salt Lake City

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AD (2003) Estimating site occupancy, colonization and local extinction when a species is detected imperfectly. Ecology 84:2200–2207

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic, San Diego

    Google Scholar 

  • Mazerolle MJ, Bailey LL, Kendall WL, Royle JA, Converse SJ, Nichols JD (2007) Making great leaps: accounting for detectability in herpetological field studies. Journal of Herpetology 41:672–689

    Article  Google Scholar 

  • McMenamin SK, Hadly EA, Wright CK (2008) Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proceedings of the National Academy of Sciences (USA) 105:16988–16993

    Article  CAS  Google Scholar 

  • Muths E, Corn PS, Pessier AP, Green DE (2003) Evidence for disease related amphibian decline in Colorado. Biological Conservation 110:357–365

    Article  Google Scholar 

  • Noss RF, Carroll C, Vance-Borland K, Wuerthner G (2002) A multicriteria assessment of the irreplaceability and vulnerability of sites in the Greater Yellowstone Ecosystem. Conservation Biology 16:895–908

    Article  Google Scholar 

  • Patla DA, Peterson CR, Corn PS (2009) Amphibian decline in Yellowstone National Park. Proceedings of the National Academy of Sciences (USA) 106(9):E22

    Article  CAS  Google Scholar 

  • Pechmann JHK, Wilbur HM (1994) Putting declining amphibian populations in perspective: natural fluctuations and human impacts. Herpetologica 60:55–84

    Google Scholar 

  • Pederson GT, Gray ST, Woodhouse CA, Betancourt JL, Fagre DB, Littell JS, Watson E, Luckman BH, Graumlich LJ (2011) The unusual nature of recent snowpack declines in the North American Cordillera. Science 333:332–335

    Article  PubMed  CAS  Google Scholar 

  • Petranka JW, Smith CK, Scott AF (2004) Identifying the minimal demographic unit for monitoring pond-breeding amphibians. Ecological Applications 14:1065–1078

    Article  Google Scholar 

  • Prugh LR, Hodges KE, Sinclair ARE, Brashares JS (2009) Effect of habitat area and isolation on fragmented animal populations. Proceedings of the National Academy of Sciences (USA) 105:20770–20775

    Article  Google Scholar 

  • Schmidt BR (2005) Monitoring the distribution of pond-breeding amphibians when species are detected imperfectly. Aquatic Conservation of Marine and Freshwater Ecosystems 15:681–692

    Article  Google Scholar 

  • Stebbins RC, Cohen NW (1995) A natural history of amphibians. Princeton University Press, Princeton

    Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  PubMed  CAS  Google Scholar 

  • Thompson SK (1992) Sampling. Wiley, New York

    Google Scholar 

  • Thoms C, Corkran CC, Olson DH (1997) Basic amphibian survey for inventory and monitoring in lentic habitats. In: Olson DH, Leonard WP, Bury RB (eds) Sampling amphibians in lentic habitats. Northwest Fauna 4, Society for Northwestern Vertebrate Biology, Olympia, pp 35–46

  • Van Buskirk J (2005) Local and landscape influence on amphibian occurrence and abundance. Ecology 86:1936–1947

    Article  Google Scholar 

  • Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ (2010) Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proceedings of the National Academy of Sciences (USA) 107:9689–9694

    Article  CAS  Google Scholar 

  • Werner EE, Yurewicz KL, Skelly DK, Relyea RA (2007) Turnover in an amphibian metacommunity: the role of local and regional factors. Oikos 116:1713–1725

    Article  Google Scholar 

  • Werner EE, Relyea RA, Yurewicz KL, Skelly DK, Davis CJ (2009) Comparative landscape dynamics of two anuran species: climate-driven interaction of local and regional processes. Ecological Monographs 79:503–521

    Article  Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46 Supplement:120–138

    Article  Google Scholar 

  • Wright C, Gallant A (2007) Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sensing of the Environment 107:582–60

    Article  Google Scholar 

Download references

Acknowledgments

Christie Hendrix and Sue Wolff, and other personnel from Yellowstone and Grand Teton National Parks, Big Sky Institute and Idaho State University supported multiple aspects of permits, logistics and administration. Robert Klaver compiled catchment delineation data from the USGS EROS Data Center. Larissa Bailey (Colorado State University) provided assistance as consultant for sample design, statistical issues, and field methods. Chris Brown and Donn Holmes (USGS) supported data management. Cathie Jean (NPS GRYN) made important contributions in the design and planning of this work. Erin Muths and two anonymous reviewers provided constructive comments that strengthened the paper. We thank our numerous field assistants for their hard work in often arduous conditions. Funding for this research was provided by the NPS GRYN, NMSU College of Business and USGS ARMI. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This is contribution number 396 of the U.S. Geological Survey Amphibian Research and Monitoring Initiative (ARMI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Gould.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 367 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gould, W.R., Patla, D.A., Daley, R. et al. Estimating Occupancy in Large Landscapes: Evaluation of Amphibian Monitoring in the Greater Yellowstone Ecosystem. Wetlands 32, 379–389 (2012). https://doi.org/10.1007/s13157-012-0273-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-012-0273-0

Keywords

Navigation