Skip to main content
Log in

A Limit Theorem for Scaled Eigenvectors of Random Dot Product Graphs

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

We prove a central limit theorem for the components of the largest eigenvectors of the adjacency matrix of a finite-dimensional random dot product graph whose true latent positions are unknown. We use the spectral embedding of the adjacency matrix to construct consistent estimates for the latent positions, and we show that the appropriately scaled differences between the estimated and true latent positions converge to a mixture of Gaussian random variables. We state several corollaries, including an alternate proof of a central limit theorem for the first eigenvector of the adjacency matrix of an Erdos-Rényi random graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldous, D.J. (1981). Representations for partially exchangeable arrays of random variables. J. Multivariate. Anal. 11, 581–598.

    Article  MathSciNet  MATH  Google Scholar 

  • Bickel, P.J. and Chen, A. (2009). A nonparametric view of network models and Newman-Girvan and other modularities. Proc. Natl. Acad. Sci. USA 106, 21, 068–73.

    Google Scholar 

  • Bickel, P.J., Chen, A. and Levina E. (2011). The method of moments and degree distributions for network models. Ann. Statist. 39, 38–59.

    Article  MathSciNet  MATH  Google Scholar 

  • Choi, D.S., Wolfe, P.J. and Airoldi, E.M. (2012). Stochastic blockmodels with a growing number of classes. Biometrika 99, 273–284.

    Article  MathSciNet  MATH  Google Scholar 

  • Chung, F.R.K. (1997). Spectral Graph Theory. American Mathematical Society.

  • Diaconis, P. and Janson, S. (2008). Graph limits and exchangeable random graphs. Rend. Mat. Appl. 28, 33–61.

    MathSciNet  MATH  Google Scholar 

  • Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Math. J 23, 298–305.

    MathSciNet  MATH  Google Scholar 

  • Fishkind, D.E., Sussman D.L., Tang, M., Vogelstein, J.T. and Priebe, C.E. (2013). Consistent adjacency-spectral partitioning for the stochastic block model when the model parameters are unknown. SIAM J. Matrix Anal. Appl. 34, 23– 39.

    Article  MathSciNet  MATH  Google Scholar 

  • Fortunato, S. (2010). Community detection in graphs. Phys. Rep. 486, 75–174.

    Article  MathSciNet  Google Scholar 

  • Fraley, C. and Raftery, A.E. (1999). MCLUST: Software for model-based cluster analysis. J. Classif. 16, 297–306.

    Article  MATH  Google Scholar 

  • Füredi, Z. and Komlós, J. (1981). The eigenvalues of random symmetric matrices. Combinatorica 1, 233–241.

    Article  MathSciNet  MATH  Google Scholar 

  • Goldenberg, A., Zheng A.X., Fienberg, S.E. and Airoldi, E.M. (2010). A survey of statistical network models. Foundations and Trends®; in Machine Learning 2, 129–233.

    Article  MATH  Google Scholar 

  • Hoff, P.D., Raftery A.E., and Handcock, M.S. (2002). Latent space approaches to social network analysis. J. Am. Statist. Assoc. 97, 1090–1098.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoover, D.N. (1979). Relations on probability spaces and arrays of random variables. Tech. rep. Institute for Advanced Study.

  • Janson, S. (2005). The first eigenvalue of random graphs. Comb. Probab. Comput. 14, 815–828.

    Article  MathSciNet  MATH  Google Scholar 

  • Knowles, A. and Yin, J. (2011). Eigenvector distribution of Wigner matrices. Probab. Theory Related Fields, 1–40.

  • Krivelevich, M. and Sudakov, B. (2003). The largest eigenvalue of sparse random graphs. Comb. Probab. Comput. 12, 61–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Luxburg, U.V. (2007). A tutorial on spectral clustering. Stat. Comput. 17, 395–416.

    Article  MathSciNet  Google Scholar 

  • Marchette, D., Priebe, C.E. and Coppersmith, G. (2011). Vertex nomination via attributed random dot product graphs. In Proceedings of the 57th ISI World Statistic Congress.

  • Oliveira, R.I. (2010). Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges. arXiv:preprint.

  • Rohe, K., Chatterjee, S. and Yu, B. (2011). Spectral clustering and the high-dimensional stochastic blockmodel. Ann. Statist. 39, 1878–1915.

    Article  MathSciNet  MATH  Google Scholar 

  • Sarkar, P. and Bickel, P.J. (2015). Role of normalization in spectral clustering for stochastic blockmodels. Ann. Statist. 43, 962–990.

    Article  MathSciNet  MATH  Google Scholar 

  • Silverstein, J.W. (1994). The spectral radii and norms of large-dimensional non-central random matrices. Comm. Statist. Stochastic Models 10, 3, 525–532.

    Article  MathSciNet  MATH  Google Scholar 

  • Sussman, D.L. (2014). Foundations of Adjacency Spectral Embedding. PhD Thesis, Johns Hopkins University.

  • Sussman, D.L., Tang, M., Fishkind, D.E. and Priebe, C.E. (2012). A consistent adjacency spectral embedding for stochastic blockmodel graphs. J. Am. Statist. Assoc 107, 1119–1128.

    Article  MathSciNet  MATH  Google Scholar 

  • Sussman, D.L., Tang, M. and Priebe, C.E. (2014). Consistent latent position estimation and vertex classification for random dot product graphs. IEEE T. Pattern. Anal. 36, 48–57.

    Article  Google Scholar 

  • Tang, M., Sussman D.L. and Priebe C.E. (2013). Universally consistent vertex classification for latent position graphs. Ann. Statist. 41, 1406–1430.

    Article  MathSciNet  MATH  Google Scholar 

  • Tao, T. and Vu, V. (2012). Random matrices: Universal properties of eigenvectors. Random Matrices: Theory and Applications 1.

  • Tropp, J.A. (2011). Freedmans inequality for matrix martingales. Electron. Commun. Probab. 16, 262–270.

    Article  MathSciNet  MATH  Google Scholar 

  • Yan, T. and Xu, J. (2013). A central limit thereom in the ß-model for undirected random graphs with a diverging number of vertices. Biometrika 100, 519–524.

    Article  MathSciNet  MATH  Google Scholar 

  • Young, S. and Scheinerman, E. (2007). Random dot product graph models for social networks. In Algorithms and models for the web-graph. Springer, p. 138–149.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Athreya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athreya, A., Priebe, C.E., Tang, M. et al. A Limit Theorem for Scaled Eigenvectors of Random Dot Product Graphs. Sankhya A 78, 1–18 (2016). https://doi.org/10.1007/s13171-015-0071-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-015-0071-x

Keywords and phrases.

AMS (2000) subject classification.

Navigation