Skip to main content
Log in

Bayesian Variable Selection and Estimation Based on Global-Local Shrinkage Priors

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

We consider in this paper simultaneous Bayesian variable selection and estimation for linear regression models with global-local shrinkage priors on the regression coefficients. We propose a variable selection procedure that selects a variable if the ratio of the posterior mean of its regression coefficient to the corresponding ordinary least square estimate is greater than a half. The regression coefficient is estimated by the posterior mean or zero depending on whether the corresponding variable is selected or not. Under the assumption of orthogonal designs, we prove that if the local parameters have polynomial-tailed priors, the proposed method enjoys the oracle property in the sense that it can achieve variable selection consistency and optimal estimation rate at the same time. However, if, instead, an exponential-tailed prior is used for the local parameters, the proposed method has variable selection consistency but not the optimal estimation rate. We show via simulation and real data examples that our proposed selection mechanism works for nonorthogonal designs as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armagan, A., Clyde, M. and Dunson, D.B. (2011). Generalized beta mixtures of Gaussians, p. 523–531.

  • Armagan, A., Dunson, D.B. and Lee, J. (2013). Generalized double Pareto shrinkage. Stat. Sin. 23, 1, 119–143.

    MathSciNet  MATH  Google Scholar 

  • Bayarri, M.J., Berger, J.O., Forte, A. and Garca-Donato, G. (2012). Criteria for Bayesian model choice with application to variable selection. Ann. Statist. 40, 3, 1550–1577. https://doi.org/10.1214/12-AOS1013.

    Article  MathSciNet  MATH  Google Scholar 

  • Bhadra, A., Datta, J., Polson, N.G. and Willard, B. (2017). The horseshoe + estimator of ultra-sparse signals. Bayesian Anal. https://doi.org/10.1214/16-BA1028, advance publication.

  • Bhattacharya, A., Pati, D., Pillai, N.S. and Dunson, D.B. (2015). Dirichlet–Laplace priors for optimal shrinkage. J. Am. Stat. Assoc. 110, 512, 1479–1490.

    Article  MathSciNet  MATH  Google Scholar 

  • Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987). Regular variation (Encyclopedia of Mathematics and its Applications). Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Carvalho, C.M., Polson, N.G. and Scott, J.G. (2010). The horseshoe estimator for sparse signals. Biometrika 97, 2, 465–480.

    Article  MathSciNet  MATH  Google Scholar 

  • Castillo, I., Schmidt-Hieber, J. and Van der Vaart, A. (2015). Bayesian linear regression with sparse priors. Ann. Stat. 43, 5, 1986–2018.

    Article  MathSciNet  MATH  Google Scholar 

  • Clyde, M., Parmigiani, G. and Vidakovic, B. (1998). Multiple shrinkage and subset selection in wavelets. Biometrika 85, 2, 391–401.

    Article  MathSciNet  MATH  Google Scholar 

  • Datta, J. and Ghosh, J.K. (2013). Asymptotic properties of Bayes risk for the horseshoe prior. Bayesian Anal. 8, 1, 111–132.

    Article  MathSciNet  MATH  Google Scholar 

  • Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression. Ann. Stat. 32, 2, 407–499.

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 456, 1348–1360.

    Article  MathSciNet  MATH  Google Scholar 

  • George, E.I. and McCulloch, R.E. (1993). Variable selection via Gibbs sampling. J. Am. Stat. Assoc. 88, 423, 881–889.

    Article  Google Scholar 

  • Geweke, J. (1996). Variable selection and model comparison in regression. Bayesian statistics 5, 609–620.

    MathSciNet  Google Scholar 

  • Ghosh, P., Tang, X., Ghosh, M. and Chakrabarti, A. (2016). Asymptotic properties of Bayes risk of a general class of shrinkage priors in multiple hypothesis testing under sparsity. Bayesian Anal. 11, 3, 753–796.

    Article  MathSciNet  MATH  Google Scholar 

  • Griffin, J.E. and Brown, P.J. (2005). Alternative prior distributions for variable selection with very many more variables than observations. University of Warwick, Tech. rep.

    Google Scholar 

  • Griffin, J.E. and Brown, P.J. (2010). Inference with normal-gamma prior distributions in regression problems. Bayesian Anal. 5, 1, 171–188.

    Article  MathSciNet  MATH  Google Scholar 

  • Griffin, J.E. and Brown, P.J. (2011). Bayesian hyper-lassos with non-convex penalization. Aust. N. Z. J. Stat. 53, 4, 423–442.

    Article  MathSciNet  MATH  Google Scholar 

  • Hahn, P.R. and Carvalho, C.M. (2015). Decoupling shrinkage and selection in Bayesian linear models: a posterior summary perspective. J. Am. Stat. Assoc. 110, 509, 435–448.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoerl, A.E. and Kennard, R.W. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 1, 55–67.

    Article  MATH  Google Scholar 

  • Ishwaran, H. and Rao, J.S. (2005). Spike and slab variable selection: frequentist and Bayesian strategies. Ann. Stat. 33, 2, 730–773.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, V.E. and Rossell, D. (2012). Bayesian model selection in high-dimensional settings. J. Am. Stat. Assoc. 107, 498, 649–660.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Q. and Lin, N. (2010). The Bayesian elastic net. Bayesian Anal. 5, 1, 151–170.

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, F., Song, Q. and Yu, K. (2013). Bayesian subset modeling for high-dimensional generalized linear models. J. Am. Stat. Assoc. 108, 502, 589–606.

    Article  MathSciNet  MATH  Google Scholar 

  • Maruyama, Y., George, E.I., et al. (2011). Fully Bayes factors with a generalized g-prior. Ann. Stat. 39, 5, 2740–2765.

    Article  MathSciNet  MATH  Google Scholar 

  • Mitchell, T.J. and Beauchamp, J.J. (1988). Bayesian variable selection in linear regression. J. Am. Stat. Assoc. 83, 404, 1023–1032.

    Article  MathSciNet  MATH  Google Scholar 

  • Narisetty, N.N. and He, X. (2014). Bayesian variable selection with shrinking and diffusing priors. Ann. Stat. 42, 2, 789–817.

    Article  MathSciNet  MATH  Google Scholar 

  • Park, T. and Casella, G. (2008). The Bayesian lasso. J. Am. Stat. Assoc. 103, 482, 681–686.

    Article  MathSciNet  MATH  Google Scholar 

  • van der Pas, S., Szabó, B. and van der Vaart, Aad. (2017). Adaptive posterior contraction rates for the horseshoe. arXiv:170203698.

  • Polson, N.G. and Scott, J.G. (2010). Shrink globally, act locally: sparse Bayesian regularization and prediction. Bayesian Statistics 9, 501–538.

    Google Scholar 

  • Polson, N.G. and Scott, J.G. (2012). On the half–Cauchy prior for a global scale parameter. Bayesian Anal. 7, 4, 887–902.

    Article  MathSciNet  MATH  Google Scholar 

  • Ročková, V. and George, E.I. (2016). The spike-and-slab lasso. Journal of the American Statistical Association (just-accepted). https://doi.org/10.1080/01621459.2016.1260469.

  • Shuster, J. (1968). On the inverse Gaussian distribution function. J. Am. Stat. Assoc. 63, 324, 1514–1516.

    Article  MathSciNet  MATH  Google Scholar 

  • Stamey, T.A., Yang, N., Hay, A.R., McNeal, J.E., Freiha, F.S. and Redwine, E. (1987). Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med. 317, 15, 909–916.

    Article  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 58, 267–288.

    MathSciNet  MATH  Google Scholar 

  • Tomassi, D., Milone, D. and Nelson, J.D. (2015). Wavelet shrinkage using adaptive structured sparsity constraints. Signal Process. 106, 73–87.

    Article  Google Scholar 

  • Wang, H. (2012). Bayesian graphical lasso models and efficient posterior computation. Bayesian Anal. 7, 4, 867–886.

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, X. and Ghosh, M. (2015). Bayesian variable selection and estimation for group lasso. Bayesian Anal. 10, 4, 909–936.

    Article  MathSciNet  MATH  Google Scholar 

  • Zou, H. (2006). The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101, 476, 1418–1429.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the editor, the associate editor, and two anonymous referees for their thoughtful comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueying Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Xu, X., Ghosh, M. et al. Bayesian Variable Selection and Estimation Based on Global-Local Shrinkage Priors. Sankhya A 80, 215–246 (2018). https://doi.org/10.1007/s13171-017-0118-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-017-0118-2

Keywords

PACS Nos

Navigation