Skip to main content
Log in

Platoon-Based Impact Assessment of Heavy-Duty Vehicles on Traffic Stream Characteristics of Highway Lanes Under Mixed Traffic Environment

  • Published:
International Journal of Intelligent Transportation Systems Research Aims and scope Submit manuscript

Abstract

Heavy-Duty Vehicles (HDVs) on highways are among the major passengers and freight traffic carriers that occupy any space available on the roadway. The movement of HDVs under the mixed traffic environment causes higher levels of interaction between vehicles due to their physical and operational characteristics. Besides, the HDVs operating at less than their desired speed on the highway lanes cause a mixed traffic platoon formation. The primary purpose of the study is to investigate the impact of multi-class HDVs on the speed and flow rates of each highway lane under platooning conditions. In this study, traffic data was collected using an Infra-Red (IR) sensor-based device at six highway sections in India. The simultaneous equations approach is used to model the traffic speeds for determining the Dynamic Passenger Car Unit (DPCU). The speed-flow plots are established for Median Lane (ML) and Kerb Lane (KL), a minute before the arrival of HDVs (state A) and a minute after the arrival of HDVs (state B) at the IR sensor detection point, to quantify the impacts of HDVs on the speed and traffic flow rate. The study findings reveal that the speed and flow in ML and KL reduce significantly due to the influence of multi-class HDVs in the general traffic mix. Also, the speed and flow rate in ML and KL decreased with an increase in the percentage of multi-class HDVs. However, this effect was found to be comparatively higher in the ML than that in the KL. Finally, this study sets out recommendations to mitigate the adverse impacts of multi-class HDVs on the highways to enhance the speed and flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Singh, S., Santhakumar, S.M.: Empirical analysis of impact of multi-class commercial vehicles on multi-lane highway traffic characteristics under mixed traffic conditions. Int. J. Trans. Sci. Tech. (2021). https://doi.org/10.1016/j.ijtst.2021.07.005

    Google Scholar 

  2. Al-Kaisy, A., Jung, Y.: Examining the effect of heavy vehicles on traffic flow during congestion. Road Transp. Res. J. 13(4), 3–14 (2004)

    Google Scholar 

  3. Moridpour, S., Sarvi, M., Rose, G.: Modeling the lane changing execution of multi class vehicles under heavy traffic conditions. Transp. Res. Rec. 2161, 11–19 (2010)

    Article  Google Scholar 

  4. Al-Kaisy, A., Jung, A.Y., Rakha, H.: Developing passenger car equivalency factors for heavy vehicles during congestion. J. Transp. Eng. 131(7), 514–523 (2005)

    Article  Google Scholar 

  5. Zhou, J., Rilett, L., Jones, E.: Estimating passenger car equivalent using the HCM-6 PCE methodology on four-lane level freeway segments in Western U.S. Transp. Res. Rec. 2673(11), 529–545 (2019). https://doi.org/10.1177/0361198119851448

    Article  Google Scholar 

  6. Leong, L.V., Shafie, S.A.M.: Platooning behavior at two-lane, two-way rural roads with level terrain in Malaysia. Proc. In: Stanton N. (eds) Advances in Human Aspects of Transportation. 786. Cham: Springer (2019). https://doi.org/10.1007/978-3-319-93885-1_67

  7. Aerde, M.V., Vagar, S.: Capacity, speed, and platooning vehicle equivalents for two-lane rural highways. Transp. Res. Rec. 971, 58–67 (1984)

    Google Scholar 

  8. Roh, C.G., Park, B.J., Kim, J.: Impact of heavy vehicles on highway traffic flows: case study in the Seoul Metropolitan Area. J. Transp. Eng. Part A: Syst. 143(9), 05017008 (2017). https://doi.org/10.1061/JTEPBS.0000077

    Article  Google Scholar 

  9. Chandra, S., Mehar, A., Velmurugan, A.: Effect of traffic composition on capacity of multi-lane highways. KSCE. J. Civ. Eng. 20(5), 2033–2040 (2016). https://doi.org/10.1007/s12205-015-0479-9

    Article  Google Scholar 

  10. Xiong, X., Xiao, E., Jin, Li.: Analysis of a stochastic model for coordinated platooning of heavy-duty vehicles. IEEE 58 Conference on Decision and Control (CDC) Palais des Congrès et des Expositions Nice Acropolis Nice, France, December 11–13, (2019)

  11. Yang, D., Kuijpers, A., Dane, G., Sande, T.: Impacts of large-scale truck platooning on Dutch highways. 21st EURO Working Group on Transportation Meeting, Germany. Transp. Res. Proc. 37, 425–432 (2019)

    Google Scholar 

  12. Gattis, J.L., Alguire, M.S., Townsend, K., Rao, S.: Rural two-lane passing headways and platooning. Transp. Res. Rec. 1579(1), 27–34 (1997)

    Article  Google Scholar 

  13. Webster, N., Elefteriadou, L.: A simulation study of truck passenger car equivalents (PCE) on basic freeway sections. Transp. Res. Part B: Methodol. 33(5), 323–336 (1999). https://doi.org/10.1016/S0965-8564(98)00036-6

    Article  Google Scholar 

  14. Zhou, J., Rilett, L., Jones, E., Chen, Y., Zhao, L.: Quantifying platoon characteristics on four-lane level freeway segments. Proc. The 97th Annual Meeting of the Transp Res Board (2018)

  15. Lu, P., Zheng, Z., Tolliver, D., Pan, D.: Measuring passenger car equivalents (PCE) for heavy vehicle on two lane highway segments operating under various traffic conditions. J Adv Transp 1–9 (2020). https://doi.org/10.1155/2020/6972958.

  16. Chitturi, M.V., Benekohal, R.F.: Passenger car equivalents for heavy vehicles in work zones. The 87th Annual Meeting of the Transp Res Board (2007)

  17. Hangfei, L., Qiang, F.U., Hongjun, Z., Xiaofang, Y.: Influence of heavy vehicles on traffic flow in highway work zone based on delay analysis. J. Tongji Univ. Nat. Sci. 3(36), 335–338 (2008)

    Google Scholar 

  18. Shukla, S., Chandra, S.: Simulation of mixed traffic flow on four-lane divided highways. J. Ind. Rd. Cong. 72(1), 55–69 (2011)

    Google Scholar 

  19. Bains, M.S., Ponnu, B., Arkatkar, S.S.: Modeling of traffic Flow on Indian expressways using simulation technique. Proc. Soc. Behav. Sci. 43, 475–493 (2012)

    Article  Google Scholar 

  20. Dhamaniya, A., Chandra, S.: Speed characteristics of mixed traffic flow on urban arterials. Int. J. Civ. Env. Eng. 7(11), 883–888 (2013)

    Google Scholar 

  21. Himes, S.C., Donnell, E.T.: Speed prediction models for multi-lane highways: A simultaneous equations approach. J. Transp. Eng. ASCE 136(10), 855–862 (2010). https://doi.org/10.1061/(ASCE)TE.1943-5436.0000149

    Article  Google Scholar 

  22. Greenshields, B.D.: A study of traffic capacity. Proc High Res Board 14 (1935)

  23. Indian Highway Capacity Manual (Indo-HCM): New Delhi: Central Road Research Institute (2017)

  24. Singh, S., Santhakumar, S.M.: Evaluation of lane-based traffic characteristics of highways under mixed traffic conditions by different methods. J Inst Eng (India) Ser A. (In-Press) (2021)

  25. An assessment of the uncertainty achieved by the CEOS TIRTL calibrator: Clayton: National Measurement Institute (2004)

  26. Kotzenmacher, J., Minge, E., Hao, B.: Evaluation of portable non-intrusive traffic detection system. Minnesota Department of Transportation, Research Services Section, 29–34 (2005)

  27. Centre of Excellence in Urban Transportation, Indian Institute of Technology Madras: Development and evaluation traffic sensors under Indian traffic conditions, A subject-project sponsored by the Ministry of Urban Transportation, 48–64 (2016)

  28. Singh, S., Barhmaiah, B., Kodavanji, A., Santhakumar, S.M.: Analysis of two-wheeler characteristics at signalised intersection under mixed traffic conditions: A case study ofTiruchirappalli city, Resilience and Sustainable Transportation Systems, Proc. of the 13th Asia Pacific Transportation Development Conference, Shanghai, China, American Society of Civil Engineers (ASCE), 35–43 (2020). https://doi.org/10.1061/9780784482902.005

  29. Highway Capacity Manual: Highway Research Board Washington D.C. (2016)

  30. Indian Roads Congress (IRC): 64 (1990) Guidelines for Capacity of Roads in Rural Areas, Indian Roads Congress, New Delhi.

  31. Singh, S., Panda, R.K., Saw, D.K., Santhakumar, S.M.: Effect of heavy transport vehicles on speed-flow characteristics of mixed traffic on multi lane divided intercity highways. Resilience and Sustainable Transportation Systems. Proc. of the 13th Asia Pacific Transportation Development Conference, Shanghai, China, American Society of Civil Engineers (ASCE). 176–185 (2020). https://doi.org/10.1061/9780784482902.021

  32. Singh, S., Shukla, B.K., Santhakumar, S.M.: Infra-red sensor-based technology for collecting speed and headway data on highways under mixed traffic conditions. Proc. of the 7th International Conference on Signal Processing and Integrated Networks (SPIN-2020), Amity University, Noida, India, Institute of Electrical and Electronics Engineers (IEEE). 607–611 (2020). https://doi.org/10.1109/SPIN48934.2020.9070829

  33. Ferrari, P.: The effect of the competition between cars and trucks on the evolution of the motorway transport system. Transp. Res. Part C: Emerg. Tech. 558–570 (2009)

  34. Al-Kaisy, A., Karjala, S.: Car-Following interaction and the definition of free-moving vehicles on two-lane rural highways. J Transp Eng 136(10), 925–931 (2010)

    Article  Google Scholar 

  35. Singh, S., Kumar, A., Niyas, M., Santhakumar, S.M.: Multivariate analysis of freeways speed and time headway under mixed traffic streams. Proc. of the 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India, Institute of Electrical and Electronics Engineers (IEEE). 116–121 (2020). https://doi.org/10.1109/COMSNETS48256.2020.9027497

  36. Moridpour, S., Sarvi, M., Rose, G.: Effect of Surrounding Traffic Characteristics on Lane Changing Behavior. J. Transp. Eng. 136(11), 973–985 (2010)

    Article  Google Scholar 

  37. Liu, X., Xu, J., Li, M., Wei, L., Ru, H.: General-logistic-based speed-density relationship model incorporating the effect of heavy vehicles. Math. Probl. Eng. 1–10 (2019). https://doi.org/10.1155/2019/6039846.

  38. Gao, J., Liu, B., Kong, L., Guo, Z.: Study on the influence of heavy vehicles on freeway safety. Light Veh 29(5.29), 19–24 (2004)

    Google Scholar 

  39. Singh, S., Vidya, R., Shukla, B.K., Santhakumar, S.M.: Analysis of traffic flow characteristics based on area-occupancy concept on urban arterial roads under heterogeneous trafficscenario—A case study of Tiruchirappalli city. Proc. In: Y. A. Mehta et al. (eds.), Advances in Water Resources and Transportation Engineering, Lecture Notes in Civil Engineering,149, 69–84 (2021). Springer Nature, Singapore. https://doi.org/10.1007/978-981-16-1303-6_6

  40. Singh, S., Santhakumar, S.M.: Evaluation of lane-based traffic characteristics of highways under mixed traffic conditions by different methods. J. Inst. Eng. India Ser. A. 102(3),719–735 (2021). https://doi.org/10.1007/s40030-021-00549-6

Download references

Acknowledgements

The authors would like to recognize and appreciate the research facilities provided by the Centre of Excellence in Transportation Engineering (CETransE), National Institute of Technology Tiruchirappalli, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$${V}_{2W}=20.5-69.8\left(\frac{{n}_{2W}}{{v}_{2W}}\right)-33.4\left(\frac{{n}_{3W}}{{v}_{3W}}\right)-75.3\left(\frac{{n}_{CS}}{{v}_{CS}}\right)-73.1\left(\frac{{n}_{CB}}{{v}_{CB}}\right)-54.8\left(\frac{{n}_{LCV}}{{v}_{LCV}}\right)-61.3\left(\frac{{n}_{MCV}}{{v}_{MCV}}\right)-79.8\left(\frac{{n}_{HCV}}{{v}_{HCV}}\right)-66.5\left(\frac{{n}_{MAV}}{{v}_{MAV}}\right)-34.5\left(\frac{{n}_{BI}}{{v}_{BI}}\right)\left({R}^{2}=0.99\right)$$
$${V}_{3W}=16.3-58.7\left(\frac{{n}_{2W}}{{v}_{2W}}\right)-44.8\left(\frac{{n}_{3W}}{{v}_{3W}}\right)-66.7\left(\frac{{n}_{CS}}{{v}_{CS}}\right)-60.4\left(\frac{{n}_{CB}}{{v}_{CB}}\right)-41.5\left(\frac{{n}_{LCV}}{{v}_{LCV}}\right)-50.0\left(\frac{{n}_{MCV}}{{v}_{MCV}}\right)-65.1\left(\frac{{n}_{HCV}}{{v}_{HCV}}\right)-54.1\left(\frac{{n}_{MAV}}{{v}_{MAV}}\right)-22.2\left(\frac{{n}_{BI}}{{v}_{BI}}\right)\left({R}^{2}=0.97\right)$$
$${V}_{CS}=25.4-62.8\left(\frac{{n}_{2W}}{{v}_{2W}}\right)-49.6\left(\frac{{n}_{3W}}{{n}_{3W}}\right)-76.3\left(\frac{{n}_{CS}}{{v}_{CS}}\right)-71.5\left(\frac{{n}_{CB}}{{v}_{CB}}\right)-50.4\left(\frac{{n}_{LCV}}{{v}_{LCV}}\right)-60.3\left(\frac{{n}_{MCV}}{{v}_{MCV}}\right)-78.9\left(\frac{{n}_{HCV}}{{v}_{HCV}}\right)-68.2\left(\frac{{n}_{MAV}}{{v}_{MAV}}\right)-38.9\left(\frac{{n}_{BI}}{{v}_{BI}}\right)\left({R}^{2}=0.96\right)$$
$${V}_{CB}=24.8-64.2\left(\frac{{n}_{2W}}{{v}_{2W}}\right)-55.8\left(\frac{{n}_{3W}}{{v}_{3W}}\right)-80.3\left(\frac{{n}_{CS}}{{v}_{CS}}\right)-77.9\left(\frac{{n}_{CB}}{{v}_{CB}}\right)-57.6\left(\frac{{n}_{LCV}}{{v}_{LCV}}\right)-66.5\left(\frac{{n}_{MCV}}{{v}_{MCV}}\right)-84.1\left(\frac{{n}_{HCV}}{{v}_{HCV}}\right)-70.4\left(\frac{{n}_{MAV}}{{v}_{MAV}}\right)-33.4\left(\frac{{n}_{BI}}{{v}_{BI}}\right)\left({R}^{2}=0.98\right)$$
$${V}_{LCV}=18.5-66.7\left(\frac{{n}_{2W}}{{v}_{2W}}\right)-50.6\left(\frac{{n}_{3W}}{{v}_{3W}}\right)-76.9\left(\frac{{n}_{CS}}{{v}_{CS}}\right)-79.4\left(\frac{{n}_{CB}}{{v}_{CB}}\right)-54.3\left(\frac{{n}_{LCV}}{{v}_{LCV}}\right)-62.7\left(\frac{{n}_{MCV}}{{v}_{MCV}}\right)-80.3\left(\frac{{n}_{HCV}}{{v}_{HCV}}\right)-71.7\left(\frac{{n}_{MAV}}{{v}_{MAV}}\right)-40.1\left(\frac{{n}_{BI}}{{v}_{BI}}\right)\left({R}^{2}=0.99\right)$$
$${V}_{MCV}=22.1-61.5\left(\frac{{n}_{2W}}{{v}_{2W}}\right)-45.8\left(\frac{{n}_{3W}}{{v}_{3W}}\right)-70.1\left(\frac{{n}_{CS}}{{v}_{CS}}\right)-68.7\left(\frac{{n}_{CB}}{{v}_{CB}}\right)-56.7\left(\frac{{n}_{LCV}}{{v}_{LCV}}\right)-54.3\left(\frac{{n}_{MCV}}{{v}_{MCV}}\right)-69.5\left(\frac{{n}_{HCV}}{{v}_{HCV}}\right)-60.1\left(\frac{{n}_{MAV}}{{v}_{MAV}}\right)-25.4\left(\frac{{n}_{BI}}{{v}_{BI}}\right)\left({R}^{2}=0.98\right)$$
$${V}_{HCV}=21.6-55.4\left(\frac{{n}_{2W}}{{v}_{2W}}\right)-52.1\left(\frac{{n}_{3W}}{{n}_{3W}}\right)-65.7\left(\frac{{n}_{CS}}{{v}_{CS}}\right)-71.4\left(\frac{{n}_{CB}}{{v}_{CB}}\right)-55.6\left(\frac{{n}_{LCV}}{{v}_{LCV}}\right)-50.1\left(\frac{{n}_{MCV}}{{v}_{MCV}}\right)-65.7\left(\frac{{n}_{HCV}}{{v}_{HCV}}\right)-63.8\left(\frac{{n}_{MAV}}{{v}_{MAV}}\right)-30.1\left(\frac{{n}_{BI}}{{v}_{BI}}\right)\left({R}^{2}=0.97\right)$$
$${V}_{MAV}=17.3-72.5\left(\frac{{n}_{2W}}{{v}_{2W}}\right)-40.2\left(\frac{{n}_{3W}}{{v}_{3W}}\right)-55.7\left(\frac{{n}_{CS}}{{v}_{CS}}\right)-68.1\left(\frac{{n}_{CB}}{{v}_{CB}}\right)-48.3\left(\frac{{n}_{LCV}}{{v}_{LCV}}\right)-45.6\left(\frac{{n}_{MCV}}{{v}_{MCV}}\right)-50.4\left(\frac{{n}_{HCV}}{{v}_{HCV}}\right)-55.6\left(\frac{{n}_{MAV}}{{v}_{MAV}}\right)-26.3\left(\frac{{n}_{BI}}{{v}_{BI}}\right)\left({R}^{2}=0.99\right)$$
$${\mathrm{V}}_{\mathrm{BI}}=10.1-14.5\left(\frac{{\mathrm{n}}_{2\mathrm{W}}}{{\mathrm{n}}_{2\mathrm{W}}}\right)-18.6\left(\frac{{\mathrm{n}}_{3\mathrm{W}}}{{\mathrm{v}}_{3\mathrm{W}}}\right)-15.9\left(\frac{{\mathrm{n}}_{\mathrm{CS}}}{{\mathrm{v}}_{\mathrm{CS}}}\right)-18.2\left(\frac{{\mathrm{n}}_{\mathrm{CB}}}{{\mathrm{v}}_{\mathrm{CB}}}\right)-11.5\left(\frac{{\mathrm{n}}_{\mathrm{LCV}}}{{\mathrm{v}}_{\mathrm{LCV}}}\right)-12.1\left(\frac{{\mathrm{n}}_{\mathrm{MCV}}}{{\mathrm{v}}_{\mathrm{MCV}}}\right)-10.6\left(\frac{{\mathrm{n}}_{\mathrm{HCV}}}{{\mathrm{v}}_{\mathrm{HCV}}}\right)-14.3\left(\frac{{\mathrm{n}}_{\mathrm{MAV}}}{{\mathrm{v}}_{\mathrm{MAV}}}\right)-11.6\left(\frac{{\mathrm{n}}_{\mathrm{BI}}}{{\mathrm{v}}_{\mathrm{BI}}}\right)\left({\mathrm{R}}^{2}=0.96\right)$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Santhakumar, S.M. Platoon-Based Impact Assessment of Heavy-Duty Vehicles on Traffic Stream Characteristics of Highway Lanes Under Mixed Traffic Environment. Int. J. ITS Res. 20, 29–45 (2022). https://doi.org/10.1007/s13177-021-00268-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13177-021-00268-z

Keywords

Navigation