Skip to main content
Log in

Growth stresses in old beech poles after thinning: distribution and relation with wood anatomy

  • Original Article
  • Published:
Journal of the Indian Academy of Wood Science Aims and scope Submit manuscript

Abstract

In the present study, we investigated the reaction of small diameter but old beech poles to canopy opening with particular interest in occurrence of growth stresses which allows the tree to maintain or correct its spatial position. We studied the relationships between growth stresses and (i) thinning treatment and (ii) anatomical structure. Forty-two beech poles were used for the study, half of which were thinned in 2007. We measured the growth stresses indicators (GSI) at eight positions around the trunk periphery and wood anatomical characteristics including proportion of G-fibers and vessel characteristics. Surprisingly, thinning treatment did not affect the average growth stress level and intensity of reaction in old beech poles. This rather unexpected result may be related to the high age of these trees and/or the high reaction wood occurrence prior to thinning resulting from the growth in suppressed condition. Considering the relationship between the proportions of G-fiber and the level of growth stresses, a significant positive correlation was found in agreement with previous studies on other species. Further, a negative correlation was found between vessel surface area and GSI level. Vessel frequency was also decreasing with the increasing GSI level and proportion of G-fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abasolo WP, Yoshida M, Yamamoto H, Okuyama T (2009) Stress generation in aerial roots of Ficus elastica (Moraceae). IAWA J 30(2):216–224

    Article  Google Scholar 

  • Alméras T, Yoshida M, Okuyama T (2006) The generation of longitudinal maturation stress in wood is not dependent on diurnal changes in diameter of trunk. J Wood Sci 52(5):452–455

    Article  Google Scholar 

  • Badia MA, Mothe F, Constant T, Nepveu G (2005) Assessment of tension wood detection based on shiny appearance for three poplar cultivars. Ann For Sci 62(1):43–49

    Article  Google Scholar 

  • Bonser RHC, Ennos AR (1998) Measurement of prestrain in trees: implications for the determination of safety factors. Funct Ecol 12(6):971–974

    Article  Google Scholar 

  • Chang SS, Clair B, Ruelle J, Beauchêne J, Renzo FD, Quignard F, Zhao G, Yamamoto H, Gril J (2009) Mesoporosity as a new parameter for understanding tension stress generation in trees. J Exp Bot 60(11):3023–3030

    Article  CAS  PubMed  Google Scholar 

  • Christensen-Dalsgaard KK, Fournier M, Ennos AR, Barfod AS (2007) Changes in vessel anatomy in response to mechanical loading in six species of tropical trees. New Phytol 176(3):610–622

    Article  PubMed  Google Scholar 

  • Clair B, Ruelle J, Thibaut B (2003) Relationship between growth stress, mechanical-physical properties and proportion of fibre with gelatinous layer in chestnut (Castanea sativa M.). Holzforschung 57(2):189–195

    Article  CAS  Google Scholar 

  • Clair B, Ruelle J, Beauchêne J, Prévost MF, Fournier M (2006) Tension wood and opposite wood in 21 tropical rain forest species. 1. Occurrence and efficiency of G-layer. IAWA J 27(3):329–338

    Google Scholar 

  • Clair B, Alméras T, Pilate G, Jullien D, Sugiyama J, Riekel C (2010) Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction. Plant Physiol 152(3):1650–1658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clair B, Alteyrac J, Gronvold A, Espejo J, Chanson B, Alméras T (2013) Patterns of longitudinal and tangential maturation stresses in Eucalyptus nitens plantation trees. Ann For Sci 70(8):801–811

    Article  Google Scholar 

  • Dassot M, Fournier M, Ningre F, Constant T (2012) Effect of tree size and competition on tension wood production over time in beech plantations and assessing relative gravitropic response with a biomechanical model. Am J Bot 99(9):1427–1435

    Article  PubMed  Google Scholar 

  • Evans DJ, Jackson RJ (1972) Red beech management: implications from early growth plots. New Zeal J For 17(2):189–200

    Google Scholar 

  • Fang CH, Clair B, Gril J, Liu SQ (2008) Growth stresses are highly controlled by the amount of G-layer in poplar tension wood. IAWA J 29(3):237–246

    Article  Google Scholar 

  • Ferrand JC (1982) Etude des contraintes de croissance Deuxième partie: Variabilité en forêt des contraintes de croissance du hêtre (Fagus sylvatica L.). Ann For Sci 39(3):187–218

    Article  Google Scholar 

  • Fournier M, Bordonne PA, Guitard D, Okuyama T (1990) Growth stress patterns in tree stems. Wood Sci Technol 24(2):131–142

    Article  Google Scholar 

  • Fournier M, Chanson B, Thibaut B, Guitard D (1994) Mesures des déformations résiduelles de croissance à la surface des arbres, en relation avec leur morphologie. Observations sur différentes espèces. Ann For Sci 51(3):249–266

    Article  Google Scholar 

  • Gartner BL (1997) Trees have higher longitudinal growth strains in their stems than in their roots. Int J Plant Sci 158(4):418–423

    Article  Google Scholar 

  • IAWA (1964) Multilingual glossary of terms used in wood anatomy. Verlagsbuchanstalt Konkordia, Winterthur

    Google Scholar 

  • Jourez B, Riboux A, Leclercq A (2001) Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv ‘Ghoy’). IAWA J 22(2):133–157

    Article  Google Scholar 

  • Jullien D, Widmann R, Loup C, Thibaut B (2013) Relationship between tree morphology and growth stress in mature European beech stands. Ann For Sci 70(2):133–142

    Article  Google Scholar 

  • Kubler H (1987) Growth stresses in trees and related wood properties. For Prod Abstr 48:61–119

    Google Scholar 

  • Medhurst J, Ottenschlaeger M, Wood M, Harwood C, Beadle C, Valencia JC (2011) Stem eccentricity, crown dry mass distribution, and longitudinal growth strain of plantation-grown Eucalyptus nitens after thinning. Can J For Res 41(11):2209–2218

    Article  Google Scholar 

  • Mellerowicz EJ, Gorshkova TA (2012) Tensional stress generation in gelatinous fibers: a review and possible mechanism based on cell-wall structure and composition. J Exp Bot 63(2):551–565

    Article  CAS  PubMed  Google Scholar 

  • Mitchell SJ (2000) Stem growth responses in Douglas-fir and Sitka spruce following thinning: implications for assessing wind-firmness. For Ecol Manag 135(1):105–114

    Article  Google Scholar 

  • Polge H (1981) Influence des éclaircies sur les contraintes de croissance du hêtre. Ann For Sci 38(4):407–423

    Article  Google Scholar 

  • Ruelle J, Clair B, Beauchêne J, Prévost MF, Fournier M (2006) Tension wood and opposite wood in 21 tropical rain forest species. 2. Comparison of some anatomical and ultrastructural criteria. IAWA J 27(4):341–376

    Article  Google Scholar 

  • Ruelle J, Beauchene J, Thibaut A, Thibaut B (2007) Comparison of physical and mechanical properties of tension and opposite wood from ten tropical rainforest trees from different species. Ann For Sci 64(5):503–510

    Article  Google Scholar 

  • Sassus F (1998) Déformations de maturation et propriétés du bois de tension chez le hêtre et le peuplier: mesures et modèles. Dissertation, ENGREF, France

  • Spatz HC, Brüchert F (2000) Basic biomechanics of self-supporting plants: wind loads and gravitational loads on a Norway spruce tree. For Ecol Manag 135:33–44

    Article  Google Scholar 

  • Valencia J, Harwood C, Washusen R, Morrow A, Wood M, Volker P (2011) Longitudinal growth strain as a log and wood quality predictor for plantation-grown Eucalyptus nitens sawlogs. Wood Sci Technol 45(1):15–34

    Article  CAS  Google Scholar 

  • Washusen R, Evans R (2001) The association between cellulose crystallite width and tension wood occurrence in Eucalyptus globulus. IAWA J 22(3):235–243. doi:10.1163/22941932-90000281

    Article  Google Scholar 

  • Washusen R, Ilic J, Waugh G (2003) The relationship between longitudinal growth strain, tree form and tension wood at the stem periphery of ten-to eleven-year-old Eucalyptus globulus Labill. Holzforschung 57(3):308–316

    Article  CAS  Google Scholar 

  • Washusen R, Baker T, Menz D, Morrow A (2005) Effect of thinning and fertilizer on the cellulose crystallite width of Eucalyptus globulus. Wood Sci Technol 39(7):569–578

    Article  CAS  Google Scholar 

  • Yoshida M, Ohta H, Okuyama T (2002) Tensile growth stress and lignin distribution in the cell walls of black locust (Robinia pseudoacacia). J Wood Sci 48(2):99–105

    Article  CAS  Google Scholar 

  • Zhu JJ, Li FQ, Matsuzaki T, Gonda Y, Yamamoto M (2003) Effects of thinning on wind damage in Pinus thunbergii plantation. J For Res 14(1):1–8

    Article  Google Scholar 

Download references

Acknowledgments

We thank E. Cornu, E. Farré, C. Freyburger, P. Gelhaye, L. Dailly, F. Vast, D. Rittié, F. Bordat and A. Mercanti for field work and M. Harroué for sample preparation in the laboratory. This work was supported by the WADE project funded by the French National Research Agency (ANR) as part of the “Investissementsd’Avenir” program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE) and Beasiswa Unggulan BPKLN Ministry of Education of The Republic of Indonesia. The silvicultural experiment is a collaborative work between INRA and the French National Forest Office (ONF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Citra Yanto Ciki Purba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purba, C.Y.C., Noyer, E., Ruelle, J. et al. Growth stresses in old beech poles after thinning: distribution and relation with wood anatomy. J Indian Acad Wood Sci 12, 37–43 (2015). https://doi.org/10.1007/s13196-015-0142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13196-015-0142-6

Keywords

Navigation