Skip to main content
Log in

An intelligent procedure for watermelon ripeness detection based on vibration signals

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, an efficient procedure for ripeness detection of watermelon was presented. A nondestructive method was used based on vibration response to determine the internal quality of watermelon. The responses of samples to vibration excitation were optically recorded by a Laser Doppler (LD) vibrometer. Vibration data was collected from watermelons of two qualities, namely, ripe and unripe. Vibration signals were transformed from time-domain to frequency-domain by fast Fourier transform (FFT). Twenty nine features were extracted from the FFT amplitude and phase angle of the vibration signals. K-nearest neighbor (KNN) analysis was applied as a classifier in decision-making stage. The experimental results showed that the usage of the FFT amplitude of the vibration signals gave the maximum classification accuracy. This method allowed identification at a 95.0 % level of efficiency. Hence, the proposed method can reliably detect watermelon ripeness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armstrong PR, Stone ML, Brusewitz GH (1997) Nondestructive acoustic and compression measurements of watermelon for internal damage detection. Appl Eng Agric 13(5):641–645

    Article  Google Scholar 

  • Beltrán NH, Duarte-Mermoud MA, Bustos MA, Salah SA, Loyola EA, Peña-Neira AI, Jalocha JW (2006) Feature extraction and classification of Chilean wines. J Food Eng 75:1–10

    Article  Google Scholar 

  • Bengtsson GB, Lundby F, Haugen JE, Egelandsdal B, Marheim JA (2003) Prediction of postharvest maturity and size of Victoria plums by vibration response. Acta Hortic 599:367–372

    Google Scholar 

  • Chica M, Campoy P (2012) Discernment of bee pollen loads using computer vision and one-class classification techniques. J Food Eng 112:50–59

    Article  Google Scholar 

  • Choi K, Singh S, Kodali A, Pattipati KR, Sheppard JW, Namburu SM, Chigua S, Prokhorov DV, Qiao L (2007) Novel classifier fusion approaches for fault diagnosis in automotive systems. Autotestcon, Baltimore, pp 260–269

    Google Scholar 

  • Diezma-Iglesias B, Ruiz-Altisent M, Orihuel B (2002) Acoustic impulse response for detecting hollow heart in seedless watermelon. In Proceedings of Postharvest Unlimited International Conference, Leuven, Belgium

  • Duda RO, Hart P, Storck DG (2001) Pattern classification, 2nd edn. Wiley, New York

    Google Scholar 

  • Flores K, Sanchez MT, Perez-Marin DC, Lopez MD, Guerrero JE, Garrido-Varo A (2008) Prediction of total soluble solid content in intact and cut melons and watermelons using near infrared spectroscopy. J Near Infrared Spectrosc 16(2):91–98

    Article  CAS  Google Scholar 

  • Ito H, Morimoto S, Yamauchi R, Ippoushi K, Azuma K, Hugashio H (2002) Potential of near infrared spectroscopy for nondestructive estimation of soluble solids in watermelons. Acta Hortic 588:353–356

    CAS  Google Scholar 

  • Jamal N, Ying Y, Wang J, Rao X (2005) Finite element models of watermelon and their applications. Transactions of the CSAE 21(1):17–22

    Google Scholar 

  • Kato K (1997) Electrical density sorting and estimation of soluble solids content of watermelon. J Agr Eng Res 67(2):161–170

    Article  Google Scholar 

  • Landahl S, Terry LA (2012) Avocado firmness monitoring with values obtained by means of laser Doppler vibrometry. Acta Hortic 945:239–245

    Google Scholar 

  • Lu Z, Szafron D, Greiner R, Lu P, Wishart DS, Poulin B, Anvik J, Macdonell C, Eisner R (2004) Predicting subcellular localization of proteins using machine-learned classifiers. Bioinformatics 20(4):547–556

    Article  CAS  Google Scholar 

  • Mollazade K, Omid M, Arefi A (2012) Comparing data mining classifiers for grading raisins based on visual features. Comput Electron Agr 84:124–131

    Article  Google Scholar 

  • Motomura Y, Nagao T, Sakurai N (2004) Nondestructive and noncontact measurement of flesh firmness of 6 apple cultivars by laser Dopplar vibrometer (LDV). J Jpn Soc Food Sci 51(9):483–490

    Article  Google Scholar 

  • Muramatsu N, Sakurai N, Wada N, Yamamoto R, Takahara T, Ogata T, Tanaka K, Asakura T, Ishikawa-Takano Y, Nevins DJ (1999) Evaluation of fruit tissue texture and internal disorders by laser Doppler detection. Postharvest Biol Tec 15(1):83–88(6)

    Article  Google Scholar 

  • Muramatsu N, Sakurai N, Wada N, Yamamoto R, Tanaka K, Asakura T, Ishikawa-Takano Y, Nevins DJ (2000) Remote sensing of fruit textural changes with a laser Doppler vibrometer. J Am Soc Hortic Sci 125(1):120–127

    Google Scholar 

  • Nelson SO, Guo W, Trabelsi S, Kays SJ (2007) Dielectric spectroscopy of watermelons for quality sensing. Meas Sci Technol 18:1887–1892

    Article  CAS  Google Scholar 

  • Omid M, Mahmoudi A, Omid MH (2009) An intelligent system for sorting pistachio nut varieties. Expert Syst Appl 36:11528–11535

    Article  Google Scholar 

  • Oveisi Z, Minaei S, Rafiee S, Eyvani A, Borghei A (2012) Application of vibration response technique for the firmness evaluation of pear fruit during storage. J Food Sci Technol. doi:10.1007/s13197-012-0811-z

    Google Scholar 

  • Sakurai N, Iwatani S, Terasaki S, Yamamoto R (2005) Evaluation of ‘Fuyu’ persimmon texture by a new parameter, “Sharpness index”. J Jpn Soc Hortic Sci 74:150–158

    Article  Google Scholar 

  • Shahabi C, Kolahdouzan MR, Sharifzadeh M (2003) A road network embedding technique for k-nearest neighbor search in moving object databases. GeoInformatica 7(3):255–273

    Article  Google Scholar 

  • Sone I, Olsen RL, Sivertsen AH, Eilertsen G, Heia K (2012) Classification of fresh Atlantic salmon (Salmo salar L.) fillets stored under different atmospheres by hyperspectral imaging. J Food Eng 109:482–489

    Article  CAS  Google Scholar 

  • Song Y, Huang J, Zhou D, Zha H, Giles CL (2007) Informative K-nearest neighbor pattern classification. In Proceedings of the eleventh European Conference on Principles and Practice of Knowledge Discovery in Databases, Warsaw, Poland, pp 248–264

  • Stone ML, Armstrong PR, Zhang X, Brusewitz GH, Chen DD (1996) Watermelon maturity determination in the field using acoustic impulse impedance techniques. T ASAE 39(6):2325–2330

    Article  Google Scholar 

  • Sun T, Huang K, Xu H, Ying Y (2010) Research advances in nondestructive determination of internal quality in watermelon/melon: a review. J Food Eng 100:569–577

    Article  Google Scholar 

  • Taniwaki M, Hanada T, Sakurai N (2009a) Postharvest quality evaluation of “Fuyu” and “Taishuu” persimmons using a nondestructive vibrational method and an acoustic vibration technique. Postharvest Biol Tec 51(1):80–85

    Article  CAS  Google Scholar 

  • Taniwaki M, Hanada T, Tohro M, Sakurai N (2009b) Non-destructive determination of the optimum eating ripeness of pears and their texture measurements using acoustical vibration techniques. Postharvest Biol Tec 51:305–310

    Article  Google Scholar 

  • Taniwaki M, Takahashi M, Sakurai N (2009c) Determination of optimum ripeness for edibility of postharvest melons using nondestructive vibration. Food Res Int 42:137–141

    Article  Google Scholar 

  • Terasaki S, Wada N, Sakurai N, Muramatsu N, Yamamoto R, Nevins DJ (2001) Nondestructive measurement of kiwifruit ripeness using a laser Doppler vibrometer. T ASAE 44:81–87

    Article  Google Scholar 

  • Terasaki S, Sakurai N, Zebrowski J, Murayama H, Yamamoto R, Nevins DJ (2006) Laser Doppler vibrometer analysis of changes in elastic properties of ripening ‘La France’ pears after postharvest storage. Postharvest Biol Tec 42:198–207

    Article  Google Scholar 

  • Tollner EW (1993) X-ray technology for detecting physical quality attributes in agricultural produce. Postharvest News Inf 4(6):149–155

    Google Scholar 

  • Widodo A, Yang BS (2007) Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors. Expert Syst Appl 33:241–250

    Article  Google Scholar 

  • Yamamoto H, Iwamoto M, Haginuma S (1980) Acoustic impulse response method for measuring natural frequency of intact fruits and preliminary applications to internal quality evaluation of apples and watermelons. J Texture Stud 11(2):117–136

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashkan Moosavian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbaszadeh, R., Moosavian, A., Rajabipour, A. et al. An intelligent procedure for watermelon ripeness detection based on vibration signals. J Food Sci Technol 52, 1075–1081 (2015). https://doi.org/10.1007/s13197-013-1068-x

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-013-1068-x

Keywords

Navigation