Skip to main content
Log in

Mutualistic relation of termites with associated microbes for their harmonious survival

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

This article explores the symbiotic role of microorganisms (bacteria, fungi and protozoans) associated with xylophagous termites. Members of the subfamily Macrotermitinae belonging to the family Termitidae have evolved symbiosis with fungi, which belong to the genus Termitomyces. The function of Termitomyces varies for different termite groups depending on their feeding behaviour. In some termites, the primary function of Termitomyces fungi is the degradation of lignin to its simpler form and to make cellulose available to termites; however, these fungi also serve as nutrient rich food sources to other groups of termites. The subsequent breakdown of ingested cellulose in termite gut is further facilitated and controlled by the action of various groups of enzymes secreted by gut-borne microflora and micro-fauna. Understanding the function, significance and management of these diverse microbial symbionts associated with pestiferous higher termites may help in developing their effective bio-control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abo-Khatwa N (1978) Cellulase of fungus-growing termites: a new hypothesis on its origin. Experientia 34(5):559–560

    Article  CAS  Google Scholar 

  • Al-Ameri DT, Alhasan AS (2020) Diagnosis and count density determination of symbiotic protozoa into hindgut of Microcerotermes diversus (Silvestri). Plant Archives 20(1):1432–1436

    Google Scholar 

  • Ali HR, Hemeda NF, Abdelaliem YF (2019) Symbiotic cellulolytic bacteria from the gut of the subterranean termite Psammotermes hypostoma Desneux and their role in cellulose digestion. AMB Express 9(1):111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arakawa G, Watanabe H, Yamasaki H, Maekawa H, Tokuda G (2009) Purification and molecular cloning of xylanases from the wood-feeding termite Coptotermes Formosanus. Shiraki Biosci Biotechnol Biochem 73(3):710–718

    Article  PubMed  CAS  Google Scholar 

  • Auer L, Lazuka A, Sillam-Dussès D, Miambi E, O’Donohue M, Hernandez-Raquet G (2017) Uncovering the potential of termite gut microbiome for lignocellulose bioconversion in anaerobic batch bioreactors. Front Microbiol 8:2623

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakalidou A, Kämpfer P, Berchtold M, Kuhnigk T, Wenzel M, König H (2002) Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis. Int J Syst Evol Microbiol 52:1185–1192. https://doi.org/10.1099/00207713-52-4-1185

    Article  PubMed  CAS  Google Scholar 

  • Batool I, Khan FS, Awais M, Ahmed D, Khan SU, Khan MI (2021) Assessment and characterization of Xylanolytic bacteria isolated from the uut of Microtermes obesi for biomass pretreatment. Res Square https://doi.org/10.21203/rs.3.rs-282399/v1

  • Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi H (eds) Termites: Evolution, sociality, symbiosis, ecology. Kluwer Academic Publishers, Dordrecht, pp 363–387

    Chapter  Google Scholar 

  • Bourguignon T, Lo N, Dietrich C, Šobotník J, Sidek S, Roisin Y, Brune A, Evans TA (2018) Rampant host switching shaped the termite gut microbiome. Curr Biol 28(4):649–654

    Article  PubMed  CAS  Google Scholar 

  • Breznak JA, Switzer JM, Seitz H-J (1988) Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch Microbiol 150:282–288. https://doi.org/10.1007/bf00407793

    Article  CAS  Google Scholar 

  • Brugerolle G (2006) The symbiotic fauna of the African termite Hodotermes mossambicus identification of four flagellate species of the genera Spironympha Trichomonoides and RetortamonaS. Parasitol Res 98(3):257–263

    Article  PubMed  Google Scholar 

  • Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180

    Article  PubMed  CAS  Google Scholar 

  • Brune A, Friedrich M (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3(3):263–269

    Article  PubMed  CAS  Google Scholar 

  • Brune A, Ohkuma M (2010) Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis Springer, Dordrecht, pp 439–475.

  • Brune A (2018) Methanogens in the digestive tract of termites. In: Hackstein JHP (ed.). (Endo) symbiotic Methanogenic Archaea, 2nd edn. Microbiology Monographs, vol. 19 Springer, Cham, pp. 81–101

  • Bucek A, Šobotník J, He S, Shi M, McMahon DP, Holmes EC, Bourguignon T (2019) Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr Biol 29(21):3728–3734

    Article  PubMed  CAS  Google Scholar 

  • Bugg TD, Ahmad M, Hardiman EM, Singh R (2011a) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotech 22(3):394–400

    Article  PubMed  CAS  Google Scholar 

  • Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R (2011b) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28(12):1883–1896

    Article  PubMed  CAS  Google Scholar 

  • Calusinska M, Marynowska M, Bertucci M, Untereiner B, Klimek D, Goux X, Delfosse P (2020b) Integrative omics analysis of the termite gut system adaptation to Miscanthus diet identifies lignocellulose degradation enzymes. Commun Biol 3:275. https://doi.org/10.1038/s42003-020-1004-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calusinska M, Marynowska M, Bertucci M, Untereiner B, Klimek D, Goux X, Delfosse P (2020) Targeted biomass degradation by the higher termite gut system-integrative omics applied to host and its gut microbiome. bioRxiv. https://doi.org/10.1101/2020.02.06.937128

  • Chiu CI, Ou JH, Chen CY, Li HF (2019) Fungal nutrition allocation enhances mutualism with fungus-growing termite. Fungal Ecol 41:92–100

    Article  Google Scholar 

  • Chouvenc T, Šobotník J, Engel MS, Bourguignon T (2021) Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell Mol Life Sci 78(6):2749–2769

    Article  PubMed  CAS  Google Scholar 

  • Cleveland LR (1923) Symbiosis between termites and their intestinal protozoa. Proc Natl Acad Sci USA 9:424–428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cleveland LR, Hall SR, Sanders EP, Collier J (1934) The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Mem Am Acad Arts Sci 17:185–342

    Google Scholar 

  • Diouf M, Roy V, Mora P, Frechault S, Lefebvre T, Herve V, Rouland-Lefèvre C, Miambi E (2015) Profiling the succession of bacterial communities throughout the life stages of a higher termite Nasutitermes arborum (Termitidae, Nasutitermitinae) using 16S rRNA gene pyrosequencing. PLoS One 10(10): e0140014

  • Doyle WA, Blodig W, Veitch NC, Piontek K, Smith AT (1998) Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochem 37:15097–15105

    Article  CAS  Google Scholar 

  • Engel MS (2011) Family-group names for termites (Isoptera), redux. ZooKeys 148:171–184. https://doi.org/10.3897/zookeys.148.1682

    Article  Google Scholar 

  • Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): Their Phylogeny, Classification, and Rise to Ecological Dominance. Am Mus Novit 3650:1–27. https://doi.org/10.1206/651.1

    Article  Google Scholar 

  • Eutick ML, Veivers P, O'brien RW, Slaytor M (1978) Dependence of the higher termite, Nasutitermes exitiosus and the lower termite, Coptotermes lacteus on their gut flora. J Insect Physiol 24(5): 363-368.

  • Fall S, Hamelin J, Ndiaye F, Assigbetse K, Aragno M, Chotte JL, Brauman A (2007) Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds. Appl Environ Microbiol 73(16):5199–5208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fathollahi Z, Habibpour B, Imani S, Hassanzadeh N, Abdigoudarzi M (2021) Identification of Cellulolytic Bacteria from Guts of Microcerotermes diversus Silvestri (Isoptera: Termitidae) in Southern Iran. Curr Microbiol 78:1305–1316. https://doi.org/10.1007/s00284-021-02369-0

    Article  PubMed  CAS  Google Scholar 

  • Femi-Ola TO, Oyebamiji BA (2019) Molecular Characterization and Cellulolytic Activities of Bacterial Isolates from the Hindgut of Wood-feeding Termites Amitermes evuncifer Silvestri. J Adv Microbiol 14:1–10. https://doi.org/10.9734/jamb/2019/45732

    Article  CAS  Google Scholar 

  • Ferbiyanto A, Rusmana I, Raffiudin R (2015) Characterization and Identification of Cellulolytic Bacteria from gut of Worker Macrotermes gilvus. HAYATI J Biosci 22:197–200. https://doi.org/10.1016/j.hjb.2015.07.001

    Article  Google Scholar 

  • French J, Turner GL, Bradbury JF (1976) Nitrogen fixation by bacteria from the hindgut of termites. Microbiol 95:202–206. https://doi.org/10.1099/00221287-95-2-202

    Article  CAS  Google Scholar 

  • Fujita A, Abe T (2002) Amino acid concentration and distribution of lysozyme and protease activities in the guts of higher termites. Physiol Entomol 27:76–78

    Article  CAS  Google Scholar 

  • Ganesan T, Rajarajan D, Kumaresan V (2010) Microorganisms in termite mound soil and surface soil adjacent to mound. J Mycol Plant Pathol 40(3):408

    Google Scholar 

  • Grassé PP (1959) Un nouveau type de symbiose: la meule alimentaire des termites champignonnistes. Nature 3293:385–389

    Google Scholar 

  • Grassé PP (1978) Physiologie des insectes. -Sur la véritable nature et le rôle des meules à champignons construites par les termites Macrotermitinae (Isoptera : Termitidae). CRAS Paris 287:1223–1226

    Google Scholar 

  • Grassé PP (1982) Termitologia, vol I. Masson, Paris

    Google Scholar 

  • Grech-Mora I, Fardeau ML, Patel BK, Ollivier B, Rimbault A, Prensier G, Garcia JL, Garnier-Sillam E (1996) Isolation and characterization of Sporobacter termitidis gen. nov., sp. nov., from the digestive tract of the wood-feeding termite Nasutitermes lujae. Int J Syst Evol Microbiol 46(2):512–8.

  • Haizhu Z (2017) Screening and identification of lignin-degrading bacteria in termite gut and the construction of LiP-expressing recombinant Lactococcus lactis. Microb Pathog 112:63–69. https://doi.org/10.1016/j.micpath.2017.09.047

    Article  CAS  Google Scholar 

  • Harreither W, Sygmund C, Dunhofen E, Vicuna R, Haltrich D, Ludwig R (2009) Cellobiose dehydrogenase from lignolytic basidiomycete Ceriporiopsis subvermispora. Appl Environ Microbiol 75:2750–2757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Biopolymers, vol 1. Wiley-VCH, Weinheim, pp 129–180

    Google Scholar 

  • Heim R (1941) Etudes descriptives et expérimentales sur les agarics termitophiles d’Afrique tropicale. Mem De L’acad Sc 64:25–29

    Google Scholar 

  • Heim R (1977) Termites et Champignons. In: Boubée (ed), Paris, pp 207.

  • Hethener P, Brauman A, Garcia J-L (1992) Clostridium termitidis sp. nov., a Cellulolytic Bacterium from the Gut of the Wood-feeding Termite Nasutitermes Lujae. Syst Appl Microbiol 15:52–58. https://doi.org/10.1016/s0723-2020(11)80138-4

    Article  CAS  Google Scholar 

  • Holt JA (1998) Microbial activity in the mounds of some Australian termites. Appl Soil Ecol 9(1–3):183–187

    Article  Google Scholar 

  • Holt JA, Lepage M (2000) Termites and soil properties. In: Abe T, Higashi M, Bignell DE (eds) Termites: Evolution, sociality, symbiosis, ecology. Kluwer Academic Publishers, Dordrecht, pp 389–407

    Chapter  Google Scholar 

  • Holt JA, Hodgen MJ, Lamb D (1990) Soil respiration in the seasonally dry tropics of Australia. Aust J Soil Res 28:737–745

    Article  Google Scholar 

  • Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44(2):231–242

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Kudo T (2005) Intra-and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71(11):6590–6599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hongoh Y, Deevong P, Hattori S, Inoue T, Noda S, Noparatnaraporn N, Ohkuma M (2006a) Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Appl Environ Microbiol 72(10):6780–6788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hongoh Y, Ekpornprasit L, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Kudo T (2006b) Intra colony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15(2):505–516

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H, Ohkuma TTD, M, (2008) Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322(5904):1108–1109

    Article  PubMed  CAS  Google Scholar 

  • Hungate RE (1955) Mutualistic intestinal protozoa. In: Hutner SH, Lwoff A (eds) Biochemistry and physiology of protozoa, vol 2. Academic Press, New York, pp 159–199

    Google Scholar 

  • Husseneder C (2010) Symbiosis in subterranean termites: a review of insights from molecular studies. Environ Entomol 39(2):378–388

    Article  PubMed  CAS  Google Scholar 

  • Hyodo F, Inoue T, Azuma J-I, Tayasu I, Abe T (2000) Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol Biochem 32(5):653–658. https://doi.org/10.1016/s0038-0717(99)00192-3

    Article  CAS  Google Scholar 

  • Hyodo F, Tayasu I, Inoue T, Azuma JI, Kudo T, Abe T (2003) Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct Ecol 17(2):186–193

    Article  Google Scholar 

  • Ikhouane A (1995) Study of the biodegradation of plant polymers by fungi of the genus Termitomyces symbiontes of termites. Dissertation, Paris.

  • Inward D, Beccaloni G, Eggleton P (2007) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3(3):331–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jasso-Selles DE, De Martini F, Velenovsky JF, Mee ED, Montoya SJ, Hileman JT, Garcia MD, Su NY, Chouvenc T, Gile GH (2020) The Complete Protist Symbiont Communities of Coptotermes formosanus and Coptotermes gestroi: Morphological and Molecular Characterization of Five New Species. J Eukaryot Microbiol 67(6):626–641. https://doi.org/10.1111/jeu.12815 (PMID: 32603489)

    Article  PubMed  CAS  Google Scholar 

  • Johnson RA (1981) Colony development and establishment of fungus comb in Microtermes sp. usambaricus Sj€ostedt (Isoptera, Macrotermitinae) from Nigeria. J Nat Hist 32:3–12

    Google Scholar 

  • Johnson RA, Thomas RJ, Wood TG, Swift MJ (1981) The inoculation of the fungus comb in newly founded colonies of some species of the Macrotermitinae (Isoptera) from Nigeria. J Nat Hist 15(5):751–756. https://doi.org/10.1080/00222938100770541

    Article  Google Scholar 

  • Jones DT, Eggleton P (2000) Sampling termite assemblages in tropical forests: Testing a rapid biodiversity assessment protocol. J Appl Ecol 37:191–203

    Article  Google Scholar 

  • Jones R, Silence P, Webster M (2015) Preserving History: Subterranean Termite Prevention in Colonial Williamsburg. Colonial Williamsburg Foundation,Williamsburg,USA. http://museumpests.net/wpcontent/uploads/2015/03/Preserving-History-SubterraneanTermite-Prevention-in-Colonial-Williamsburg1.pdfAccessed date 16October 2020

  • Ju YM, Hsieh HM (2007) Xylaria species associated with nests of Odontotermes formosanus in Taiwan. Mycologia 99(6):936–957

    Article  PubMed  CAS  Google Scholar 

  • Kambhampati S, Eggleton P (2000) Taxonomy and phylogeny of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: Evolution, Sociality, Symbioses, Ecology. Kluwer Academic, Dordrecht, The Netherlands, pp 1–24

    Google Scholar 

  • Kirby H (1932) Protozoa in termites of the genus Amitermes. Parasitol 24(3):289–304

    Article  Google Scholar 

  • König JG (1779) Beschr der Berliner Gesellschaft Naturforsch. Freunde 4: 21–23.

  • Korb J, Aanen DK (2003) The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behav Ecol Sociobiol 53(2):65–71. https://doi.org/10.1007/s00265-002-0559-y

    Article  Google Scholar 

  • Krishna K, Grimaldi DA, Krishna V, Engel MS (2013) Treatise on the Isoptera of the world. Bull Am Mus Nat Hist 377(7):1–200

    Article  Google Scholar 

  • Li H, Yelle DJ, Li C, Yang M, Ke J, Zhang R, Liu Y, Zhu N, Liang S, Mo X, Ralph J, Currie CR, Mo J (2017) Lignocellulose pretreatment in a fungus-cultivating termite. Proc Natl Acad Sci 114(18):4709–4714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Young SE, Poulsen M., Currie C R (2020) Symbiont-Mediated Digestion of Plant Biomass in Fungus-Farming Insects. Annu Rev Entomol 66(1), https://doi.org/10.1146/annurev-ento-040920-061140

  • Li J, Sang M, Jiang Y, Wei J, Shen Y, Huang Q Ni J (2021) Polyene-Producing Streptomyces spp. From the Fungus-Growing Termite Macrotermes barneyi Exhibit High Inhibitory Activity Against the Antagonistic Fungus Xylaria. Front Microbiol 12 : 689

  • Liu N, Yan X, Zhang M, Xie L, Wang Q, Huang Y, Zhou X, Wang S, Zhou Z (2011) Microbiome of fungus-growing termites: a new reservoir for lignocellulase genes. Appl Environ Microbiol 77(1):48–56

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Eggleton P (2010) Termite phylogenetics and co-cladogenesis with symbionts. In: Bignell DE, Rosin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 27–50

    Chapter  Google Scholar 

  • Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M, Maekawa K, Bandi C, Noda H (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10(13):801–814

    Article  PubMed  CAS  Google Scholar 

  • Martin MM, Martin JS (1978) Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis: the role of acquired digestive enzymes. Science 199(4336):1453–1455

    Article  PubMed  CAS  Google Scholar 

  • Marynowska M, Goux X, Sillam-Dussès D, Rouland-Lefèvre C, Halder R, Calusinska WP, M, (2020) Compositional and functional characterisation of biomass-degrading microbial communities in guts of plant fibre-and soil-feeding higher termites. Microbiome 8(1):1–18

    Article  Google Scholar 

  • Matsumoto T (1976) The role of termites in an equatorial rain forest ecosystem of west Malaysia. I. Population density, biomass, carbon, nitrogen and calorific content and respiration rate. Oecologia 22:153–178

    Article  PubMed  Google Scholar 

  • Mitchell JD (2002) Termites as pests of crops, forestry, rangeland and structures in Southern Africa and their control. Sociobiology 40:47–69

    Google Scholar 

  • Nagam V, Aluru R, Shoaib M, Dong GR, Li Z, Pallaval VB, Ni JF (2020) Diversity of fungal isolates from fungus-growing termite Macrotermes barneyi and characterization of bioactive compound from Xylaria escharoidea. Insect Science 28(2):392–402

    Article  PubMed  CAS  Google Scholar 

  • Ni J, Tokuda G (2013) Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 31(6):838–850

    Article  PubMed  CAS  Google Scholar 

  • Nidhi K, Gupta SK, Bura A, Gandhi A (2018) Diversity of Cellulose hydrolyzing bacteria from the Gut of Coptotermes heimi (Rhinotermitidae). Asian Journal of Biological and Life Sciences 7(1)

  • Nobre T, Fernandes C, Boomsma JJ, Korb J, Aanen DK (2011) Farming termites determine the genetic population structure of Termitomyces fungal symbionts. Mol Ecol 20(9):2023–2033. https://doi.org/10.1111/j.1365-294X.2011.05064.x

    Article  PubMed  Google Scholar 

  • Noda S, Iida T, Kitade O, Nakajima H, Kudo T, Ohkuma M (2000) Endosymbiotic Bacteroidales bacteria of the flagellated protist Pseudotrichonympha grassii in the gut of the termite Coptotermes formosanus. Appl Environ Microbiol 71(12):8811–8817

    Article  CAS  Google Scholar 

  • O’Brien GW, Veivers PC, McEwen SE, Slaytor M, O’Brien RW (1979) The origin and distribution of cellulase in the termites, Nasutitermes exitiosus and Coptotermes lacteus. Insect Biochem 9(6):619–625

    Article  CAS  Google Scholar 

  • Odelson DA, Breznak JA (1985) Cellulase and other polymer-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoan from termites. Appl Environ Microbiol 49:622–626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohkuma M (2003) Termite symbiotic systems: Efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Kudo T (1998) Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. FEMS Microbiol Lett 164(2):389–395

    Article  CAS  Google Scholar 

  • Ohkuma M, Ohtoko K, Iida T, Tokura M, Moriya S, Usami R, Horikoshi K, Kudo T (2000) Phylogenetic identification of hypermastigotes, Pseudotrichonympha, Spirotrichonympha, Holomastigotoides, and parabasalian symbionts in the hindgut of termites. J Eukaryot Microbiol 47(3):249–259

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Noda S, Hongoh Y, Nalepa CA, Inoue T (2009) Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Proc Royal Soc B 276(1655):239–245

    Article  CAS  Google Scholar 

  • Otani S, Mikaelyan A, Nobre T, Hansen LH, Koné NG, Sørensen SJ, Aanen DK, Boomsma JJ, Brune A, Poulsen M (2014) Identifying the core microbial community in the gut of fungus-growing termites. Mol Ecol 23(18):4631–4644

    Article  PubMed  CAS  Google Scholar 

  • Paliwal R, Rawat AP, Rawat M, Rai JPN (2012) Bioligninolysis: Recent Updates for Biotechnological Solution. Appl Biochem Biotechnol 167(7):1865–1889. https://doi.org/10.1007/s12010-012-9735-3 (PMID:22639362)

    Article  PubMed  CAS  Google Scholar 

  • Paliwal R, Giri K, Rai JPN (2019) Microbial Ligninolysis: Avenue for Natural Ecosystem Management. In: Biotechnology: Concepts, Methodologies, Tools, and Applications. IGI Global publisher, pp 1399–1423

  • Potrikus CJ, Breznak JA (1977) Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites. Appl Environ Microbiol 33:392–399. https://doi.org/10.1128/aem.33.2.392-399.1977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Potts RC, Hewitt PH (1974) Some properties and reaction characteristics of the partially purified cellulase from the termite Trinervitermes trinervoides (Nasutitermitinae). Comp Biochem Physiol B 47(2):327–337

    Article  CAS  Google Scholar 

  • Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, Nygaard S, Nobre T, Klaubauf S, Schindler PM, Hauser F, Pan H, Yang Z, Sonnenberg ASM, de Beer ZW, Zhang Y, Wingfield MJ, Grimmelikhuijzen CJP, de Vries RP, Korb J, Aanen DK, Wang J, Boomsma JJ, Zhang G (2014) Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc Natl Acad Sci U. S A 111:14500–14505

    Article  CAS  Google Scholar 

  • Pramono AK, Sakamoto M, Iino T, Hongoh Y, Ohkuma M (2015) Dysgonomonas termitidis sp. nov., isolated from the gut of the subterranean termite Reticulitermes speratus. Int J Syst Evol 65(2):681–685

    Article  CAS  Google Scholar 

  • Radek R, Meuser K, Altinay S, Lo N, Brune A (2019) Novel lineages of oxymonad flagellates from the termite Porotermes adamsoni (Stolotermitidae): The Genera Oxynympha and Termitimonas. Protist 170(6):125–683

    Article  CAS  Google Scholar 

  • Rahman NA, Parks DH, Willner DL, Engelbrektson AL, Goffredi SK, Warnecke F, Hugenholtz P (2015) A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome 3(1):1–16

    CAS  Google Scholar 

  • Raychoudhury R, Agarwal R, Gupta M, Antony A, Sen R (2021) Pseudomonas can prevent the parasitic fungus, while keeping the crop fungus unaffected, in the gardens of Odontotermes obesus. bioRxiv, https://doi.org/10.21203/rs.3.rs-176485/v1

  • Rodriguez A, Perestelo F, Carnicero A, Regalado V, Perez R, De la Fuente G, Falcon MA (1996) Degradation of natural lignins and lignocellulosic substrates by soil-inhabiting fungi imperfecti. FEMS Microbiol Ecol 21:213–219

    Article  CAS  Google Scholar 

  • Rohrmann GF, Rossman AY (1980) Nutrient strategies of Macrotermes ukuzii. Pedobiologia 20:61–73

    CAS  Google Scholar 

  • Roonwall ML (1970) Termites of the Oriental region. In: Krishna K, Weesner FM (eds) Biology of termites, Academic Press, London

  • Rosengaus RB, Zecher CN, Schultheis KF, Brucker RM, Bordenstein SR (2011) Disruption of the termite gut microbiota and its prolonged consequences for fitness. Appl Environ Microbiol 77(13):4303–4312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rouland C, Renoux J, Petek F (1988) Purification and properties of two xylanases from Macrotermes mülleri (Termitidae, Macrotermitinae) and its symbiotic fungus Termitomyces sp. Insect Biochem 18(7):709–715. https://doi.org/10.1016/0020-1790(88)90080-7

    Article  CAS  Google Scholar 

  • Rouland C, Lenoir FE, Lepage M (1991) The role of the symbiotic fungus in the digestive metabolism of several species of fungus-growing termites. Comparative Biochemistry and Physiology: A Comparative Physiology (USA) 99(4):657–663

    Article  Google Scholar 

  • Rouland-Lefèvre C, Inoue T, Johjima T (2006) Termitomyces/termite interactions. In: Konig H, Verma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, Heidelberg, pp 335–350

    Chapter  Google Scholar 

  • Sakamoto M, Ohkuma M (2013) Bacteroides reticulotermitis sp. nov., isolated from the gut of a subterranean termite (Reticulitermes speratus). Int J Syst Evol 63(2): 691–695.

  • Sato T, Hongoh Y, Noda S, Hattori S, Ui S, Ohkuma M (2009) Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut. Environ Microbial 11(4):1007–1015

    Article  Google Scholar 

  • Sengupta S, Sengupta S (1990) β-glucosidase production by the mycelial culture of the mushroom Termitomyces clypeatus. Enzyme Microb Technol 12(4):309–314

    Article  CAS  Google Scholar 

  • Shinzato N, Muramatsu M, Matsui WY (2005) Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Biosci Biotechnol Biochem 69(6):1145–1155

    Article  PubMed  CAS  Google Scholar 

  • Singer R (1986) The Agaricales in modern taxonomy, 4th edn. Koeltz, Koenigstein, Germany.

  • Soukup P, Větrovský T, Stiblik P, Votýpková K, Chakraborty A, Sillam-Dussès D, Bourguignon T (2021) Termites are associated with external species-specific bacterial communities. Appl Environ Microbiol 87(2):e02042-e2120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stephens Michael E, Gage DJ (2020) Single-cell amplicon sequencing reveals community structures and transmission trends of protist-associated bacteria in a termite host. PLoS ONE 15(5):0233065

    Google Scholar 

  • Strassert JF, Köhler T, Wienemann TH, Ikeda-Ohtsubo W, Faivre N, Franckenberg S, Brune A (2012) ‘Candidatus Ancillula trichonymphae’, a novel lineage of endosymbiotic Actinobacteria in termite gut flagellates of the genus Trichonympha. Environ Microbiol 14(12):3259–3270

    Article  PubMed  CAS  Google Scholar 

  • Su L, Yang L, Huang S, Li Y, Su X, Wang F, Song A (2017) Variation in the gut microbiota of termites (Tsaitermes ampliceps) against different diets. Appl Biochem Biotechnol 181(1):32–47

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Li J, Du J, Xiao H, Ni J (2018) Cellulomonas macrotermitis sp. nov., a chitinolytic and cellulolytic bacterium isolated from the hindgut of a fungus-growing termite. Antonie Van Leeuwenhoek 111:471–478. https://doi.org/10.1007/s10482-017-0968-6

    Article  PubMed  CAS  Google Scholar 

  • Tartar A, Wheeler MM, Zhou X, Coy MR, Boucias DG, Scharf ME (2009) Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol Biofuels 2(1):1–19

    Article  CAS  Google Scholar 

  • Thomas RJ (1987) Factors affecting the distribution and activity of fungi in the nests of Macrotermininae (Isoptera). Soil Biol Biochem 19:343–349

    Article  Google Scholar 

  • Thongaram T, Hongoh Y, Kosono S, Ohkuma M, Trakulnaleamsai S, Noparatnaraporn N, Kudo T (2005) Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles 9(3):229–238

    Article  PubMed  Google Scholar 

  • Tibuhwa DD, Kivaisi AK, Magingo FSS (2010) Utility of the macro-micromorphological characteristics used in classifying the species of Termitomyces. Tanz J Sci 36(1):31–45

    Google Scholar 

  • Tokuda G, Watanabe H (2007) Hidden cellulases in termites: revision of an old hypothesis. Biol Lett 3(3):336–339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tokuda G, Lo N, Watanabe H (2005) Marked variations in patterns of cellulase activity against crystalline-vs carboxymethyl-cellulose in the digestive systems of diverse, wood-feeding termites. Physiol Entomol 30(4):372–380

    CAS  Google Scholar 

  • Tokuda G, Watanabe H, Lo N (2007) Does correlation of cellulase gene expression and cellulolytic activity in the gut of termite suggest synergistic collaboration of cellulases? Gene 401(1–2):131–134

    Article  PubMed  CAS  Google Scholar 

  • Tsegaye B, Balomajumder C, Roy P (2018) Isolation and Characterization of Novel Lignolytic, Cellulolytic, and Hemicellulolytic Bacteria from Wood-Feeding Termite Cryptotermes brevis. Int J Microbiol 22:29–39. https://doi.org/10.1007/s10123-018-0024-z

    Article  CAS  Google Scholar 

  • Vikram S, Arneodo JD, Calcagno J, Ortiz M, Mon ML, Etcheverry C, Talia P (2021) Diversity structure of the microbial communities in the guts of four neotropical termite species. PeerJ 9:10959

    Article  CAS  Google Scholar 

  • Waller DA (1996) Ampicillin, tetracycline and urea as protozoicides for symbionts of Reticulitermes flavipes and R. virginicus (Isoptera: Rhinotermitidae). Bull Entomol Res 86(1): 77–81.

  • Ware JL, Litman J, Klass KD, Spearman LA (2008) Relationships among the major lineages of Dictyoptera: the effect of outgroup selection on dictyopteran tree topology. Syst Entomol 33(3):429–450

    Article  Google Scholar 

  • Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450(7169):560–565

    Article  PubMed  CAS  Google Scholar 

  • Williams R.M.C (1965) Termite infestation of pines in British Honduras.Termite research in British Honduras under research scheme R. 1048, Ministry of Overseas Development. London, Overseas Research Publication, pp 11–31.

  • Wood TG (1996) The agricultural importance of termites in the tropics. Agric Zool Rev 7:117–155

    Google Scholar 

  • Wood TG, Thomas RJ (1989) The mutualistic association between Macrotermitinae and Termitomyces. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus Interaction. Academic Press, London, pp 69–92

    Chapter  Google Scholar 

  • Xiao Y (2021) An alkaline thermostable laccase from termite gut associated strain of Bacillus stratosphericus. Int J Biol Macromol 179:270–278. https://doi.org/10.1016/j.ijbiomac.2021.02.205

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Zhang L, Zhong Y, Liu N, Long Y, Wang S, Zhou X, Zhoua Z, Huanga Y, Wanga Q (2012) Profiling the metatranscriptome of the protistan community in Coptotermes formosanus with emphasis on the lignocellulolytic system. Genomics 99(4):246–255

    Article  PubMed  CAS  Google Scholar 

  • Yamin MA (1979) Termite flagellates. Sociobiology 4:1–119

    Google Scholar 

  • Yamin MA (1980) Cellulose Metabolism by the Termite Flagellate Trichomitopsis termopsidis. Appl Environ Microbiol 39:859–863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamin MA (1981) Cellulose Metabolism by the Flagellate Trichonympha from a Termite Is Independent of Endosymbiotic Bacteria. Science 211:58–59. https://doi.org/10.1126/science.211.4477.58

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Ahmad F, Liang S et al (2020) Termitomyces heimii Associated with Fungus-Growing Termite Produces Volatile Organic Compounds (VOCs) and Lignocellulose-Degrading Enzymes. Appl Biochem Biotechnol 192:1270–1283. https://doi.org/10.1007/s12010-020-03376-w

    Article  PubMed  CAS  Google Scholar 

  • Yang YJ, Zhang N, Ji SQ, Lan X, Zhang KD, Shen YL, Li FL, Ni JF (2014) Dysgonomonas macrotermitis sp. nov., isolated from the hindgut of a fungus-growing termite.

  • Yoshimura T (1995) Contribution of the protozoan fauna to nutritional physiology of the lower termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Wood Res 82:68–129

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director of Tocklai Tea Research Association, TRA, Jorhat, Assam for providing the necessary facilities and to the National Tea Research Foundation, NTRF, for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

S.R. and D.C. conceived this study. S.B. and P.P. performed data extraction and analysis. S.B., S.R. and D.C drafted the manuscript. A.M, L.K.H. and S. M. commented, reviewed and upgraded the manuscript, P.P. revised the manuscript thoroughly to give the ms a final shape and all authors agreed with the final version.

This article does not contain any studies with human participants or experimental animals performed by any of the authors.

Corresponding authors

Correspondence to Somnath Roy, Dipankar Chakraborti or Prabhat Pramanik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

1. Mutualism between termite and termitophilic fungi Termitomyces.

2. Role of various microbial symbionts of termites in digestion of plant biomass.

3. Source and function of lignin and cellulose degrading enzyme in termite- fungi interaction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayen, S., Roy, S., Chakraborti, D. et al. Mutualistic relation of termites with associated microbes for their harmonious survival. Symbiosis 85, 145–161 (2021). https://doi.org/10.1007/s13199-021-00809-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-021-00809-w

Keywords

Navigation