Skip to main content
Log in

Heat transfer enhancement using temperature-dependent effective properties of alumina-water nanoliquid with thermo-solutal Marangoni convection: A sensitivity analysis

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The sensitivity of the heat transport rate in the thermo-solutal Marangoni convection of \({\mathrm{Al}}_{2}{\mathrm{O}}_{3}-{\mathrm{H}}_{2}\mathrm{O}\) nanoliquid at 300 K is analyzed. The nanoliquid is modeled using the modified Buongiorno model which incorporates the Brownian motion, effective nanoliquid properties, and thermophoresis effects. The thermophysical models proposed by Khanafer and Vafai are chosen in this analysis as these correlations are in good agreement with the experimental values. External constraining factors like thermal radiation and variable magnetic field are also considered. The basic equations are solved using apposite transformation variables and Finite Difference Method (FDM). The impacts of the effectual parameters on all the profiles are analyzed. Furthermore, the heat transport is analyzed by executing a Response Surface Methodology (RSM) model with the Brownian motion parameter (\(0.1\le \mathrm{Nb}\le 0.5\)), thermophoretic parameter (\(0.1\le \mathrm{Nt}\le 0.5\)), and nanoparticle volume fraction (\(1\%\le \varphi \le 3\%\)). The modified Buongiorno model yields lower temperature and concentration profiles when compared to the conventional Buongiorno model. The heat transfer rate is the most sensitive to the Brownian motion parameter than thermophoresis and nanoparticle (NP) volume fraction parameters. The results of this study would be instrumental in improving the efficiency of the welding process, crystal growth, and coating technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

u, v :

Velocity of liquid in \(x\) and \(y\) directions (\(\mathrm{m}{\mathrm{ s}}^{-1}\))

T, C :

Temperature (\(K\)), Concentration

T , C :

Ambient temperature (\(K\)) and concentration

p :

Density (\(\mathrm{kg}{\mathrm{ m}}^{-3}\))

c p :

Specific heat capacity (\(\mathrm{J k}{\mathrm{g}}^{-1} {\mathrm{K}}^{-1})\)

B :

Variable magnetic field

B 0 :

Uniform magnetic field (Tesla)

A 1 , A 2 :

Positive dimensional constants

k R :

Rosseland mean absorption coefficient (\({\mathrm{m}}^{-1}\))

q r :

Radiative heat flux (\({\mathrm{Wm}}^{-2}\))

n :

Exponent

Nux :

Reduced Nusselt number

f :

Dimensionless stream function

L, ζ 1, ζ 2 :

Constants

D B :

Brownian diffusion coefficient (\({\mathrm{m}}^{2} {\mathrm{s}}^{-1}\))

D T :

Thermophoresis diffusion coefficient (\({\mathrm{m}}^{2}{\mathrm{ s}}^{-1}\))

R :

Thermal radiation parameter

M :

Magnetic parameter

Prf :

Prandtl number

Nb:

Reduced Brownian motion parameter

Nt:

Reduced thermophoretic parameter

Le:

Lewis number

r :

Solutal to thermal Marangoni number ratio

d :

Diameter (\(\mathrm{m})\)

b i :

Regression coefficients

k :

Thermal conductivity (\({\mathrm{Wm}}^{-1} {\mathrm{K}}^{-1}\))

μ :

Dynamic viscosity (\(\mathrm{kg }{\mathrm{m}}^{-1} {\mathrm{s}}^{-1}\))

v :

Kinematic viscosity (\({\mathrm{m}}^{2}{\mathrm{s}}^{-1}\))

σ e :

Electrical conductivity (\({\mathrm{Sm}}^{-1}\))

φ :

Nanoparticle volume fraction

α :

Thermal diffusivity (\({\mathrm{m}}^{2}{\mathrm{s}}^{-1}\))

σ :

Surface tension (\({\mathrm{Nm}}^{-1}\))

σ 0 :

Constant surface tension at \({T}_{\infty }\) and \({C}_{\infty }\) (\({\mathrm{Nm}}^{-1}\))

σ sb :

Stefan-Boltzmann constant

θ :

Dimensionless temperature

ϕ :

Dimensionless concentration

ψ :

Stream function

η :

Similarity variable

f :

Base fluid

nf:

Nanofluid

p :

Nanoparticle

References

  • Akbarzadeh M, Rashidi S, Bovand M, Ellahi R (2016) A sensitivity analysis on thermal and pumping power for the flow of nanofluid inside a wavy channel. J Mol Liquids 220:1–13

    Article  CAS  Google Scholar 

  • Al-Mudhaf A, Chamkha AJ (2005) Similarity solutions for MHDthermosolutal Marangoni convection over a flat surface in the presence of heat generation or absorption effects. Heat Mass Transfer. 42:112–121

    Article  CAS  Google Scholar 

  • Alsabery AI, Ismael MA, Chamkha AJ, Hashim I (2018) Mixed convection of Al2O3-water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno’s two-phase model. Int J Heat Mass Tran 939–61

  • Buongiorno J (2006) Convective transport in nanofluids. J Heat Transfer 128:240–50

    Article  Google Scholar 

  • Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135- 29). Argonne National Lab, IL (United States)

  • Darbari B, Rashidi S, Esfahani JA (2016) Sensitivity analysis of entropy generation in nanofluid flow inside a channel by response surface methodology. Entropy 18(2):52–68

    Article  Google Scholar 

  • Hayat T, Ijaz Khan M, Farooq M, Alsaedi A, Yasmeen T (2017) Impact of Marangoni convection in the flow of carbon–water nanofluid with thermal radiation. Int J Heat Mass Transfer. 106:810–815

    Article  CAS  Google Scholar 

  • Hayat T, Aziz A, Muhammad T, Alsaedi A (2019) Numerical simulation for Darcy-Forchheimer three-dimensional rotating flow of nanofluid with prescribed heat and mass flux conditions. J Therm Anal Calorim 136(5):2087–2095

    Article  CAS  Google Scholar 

  • Khanafer K, Vafai K (2011) A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Tran 54(19–20):4410–4428

    Article  CAS  Google Scholar 

  • Lin Y, Yang M (2020) The effects of radiation on heat and mass transfer of magnetohydrodynamic Marangoni flow in the boundary layer over a disk. Korean J Chem Eng 37:37–45

    Article  CAS  Google Scholar 

  • Mackolil J, Mahanthesh B (2019) Sensitivity analysis of radiative heat transfer in Casson and nano fluids under diffusion-thermo and heat absorption effects. Eurphys J Plus. https://doi.org/10.1140/epjp/i2019-12949-6

    Article  Google Scholar 

  • Magyari E, Chamkha AJ (2007) Exact analytical solutions for thermosolutal Marangoni convection in the presence of heat and mass generation or consumption. Heat Mass Transfer 43:965–974

    Article  Google Scholar 

  • Magyari E, Chamkha AJ (2008) Exact analytical results for the thermosolutalMHD Marangoni boundary layers. Int J Therm Sci 47:848–857

    Article  CAS  Google Scholar 

  • Mahanthesh B, Gireesha BJ, Shashikumar NS, Hayat T, Alsaedi A (2018) Marangoni convection in Casson liquid flow due to an infinite disk with exponential space dependent heat source and cross-diffusion effects. Results Phys 9:78–85

    Article  Google Scholar 

  • Mahanthesh B, Lorenzini G, Oudina FM, Animasaun IL (2019) Significance of exponential space- and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces. J Therm Anal Calorim 141:37–44

    Article  Google Scholar 

  • Napolitano LG, Golia C (1981) Coupled Marangoni boundary layers. Acta Astronaut. 8:417–434

    Article  Google Scholar 

  • Naz S, Gulzar MM, Waqas M, Hayat T, Alsaedi A (2020) Numerical modeling and analysis of non-Newtonian nanofluid featuring activation energy. ApplNanosci 10(8):3183–3192

    CAS  Google Scholar 

  • Reza-E-Rabbi S, Arifuzzaman SM, Sarkar T, Khan MS, Ahmmed SF (2020) Explicit finite difference analysis of an unsteady MHD flow of a chemically reacting Casson fluid past a stretching sheet with Brownian motion and thermophoresis effects. J King Saud Univ Sci 32(1):690–701

    Article  Google Scholar 

  • Shampine LF, Kierzenka J (2008) A BVP solver that controls residual and error. J Numer Anal Ind Appl Math 27–41

  • Sheikholeslami M, Chamkha AJ (2017) Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection. J Mol Liquids. 225:750–757

    Article  CAS  Google Scholar 

  • Shirvan KM, Ellahi R, Mirzakhanlari S, Mamourian M (2016) Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: numerical simulation and sensitivity analysis of turbulent fluid flow. Appl Therm Eng 109:761–74

    Article  Google Scholar 

  • Sundar LS, Sintie YT, Said Z, Singh MK, Punnaiah V, Sousa AC (2020) Energy, efficiency, economic impact, and heat transfer aspects of solar flat plate collector with Al2O3 nanofluids and wire coil with core rod inserts. Sustain Energy Technol Assess 40:100772

    Google Scholar 

  • Tran L, Lopez J, Lopez J, Uriostegui A, Barrera A, Wiggins N (2017) Li-ion battery cooling system integrates in nano-fluid environment. ApplNanosci 7(1–2):25–29

    CAS  Google Scholar 

  • Wakif A, Boulahia Z, Amine A, Animasaun IL, Afridi MI, Qasi M et al (2018) Magneto-convection of alumina–water nanofluid within thin horizontal layers using the revised generalized Buongiorno’s model. Front Heat Mass Transfer 12:1–15

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to dedicate this article to Prof. S. K. Gangadhar, Professor, Department of Mathematics, CHRIST (Deemed to be University), Bangalore on the occasion of his 60th Birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mahanthesh.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mackolil, J., Mahanthesh, B. Heat transfer enhancement using temperature-dependent effective properties of alumina-water nanoliquid with thermo-solutal Marangoni convection: A sensitivity analysis. Appl Nanosci 13, 255–266 (2023). https://doi.org/10.1007/s13204-020-01631-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01631-4

Keywords

Navigation