Skip to main content

Advertisement

Log in

Improvement of abiotic stress adaptive traits in mulberry (Morus spp.): an update on biotechnological interventions

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Mulberry (Morus spp.), being an economically important tree, is cultivated in China, India, Thailand, Brazil, Uzbekistan and other Countries across the globe, for its leaves to feed monophagous mulberry silkworm (Bombyx mori). The sustainability of silk industry is directly correlated with the production and continuous supply of high-quality mulberry leaves. In India, it is cultivated on large scale in tropical, sub-tropical and temperate regions under irrigated conditions for silkworm rearing. Drought, low temperature, high salinity and alkalinity, being experienced in widespread areas, are the major abiotic stresses, causing reduction in its potential foliage yield and quality. Further, climate change effects may worsen the productivity of mulberry in near future, not only in India but also across the globe. Although traditional breeding methods contributed immensely towards the development of abiotic stress-tolerant mulberry varieties, still there is lot of scope for implementation of modern genomic and molecular biology tools for accelerating mulberry genetic improvement programmes. This review discusses omics approaches, molecular breeding, plant tissue culture and genetic engineering techniques exploited for mulberry genetic improvement for abiotic stress tolerance. However, high-throughput biotechnological tools such as RNA interference, virus-induced gene silencing, epigenomics and genome editing tools need to be utilized in mulberry to accelerate the progress of functional genomics. The application of genomic tools such as genetic engineering, marker-assisted selection and genomic selection in breeding programmes can hasten the development of climate resilient and productive mulberry varieties leading to the vertical and horizontal expansion for quality silk production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

RAPD:

Random amplified polymorphic DNA

DAMD:

Directed amplification of minisatellite DNA

AFLP:

Amplified fragment length polymorphisms

ISSR:

Inter-simple sequence repeat (ISSR)

SRAP:

Sequence-related amplified polymorphism

SSR:

Simple sequence repeat

NCBI:

National Center for Biotechnology Information

References

  • Aggarwal RK, Udaykumar D, Hender PS, Sarkar A, Singh L (2004) Isolation and characterization of six novel microsatellite markers for mulberry (Morus indica). Mol Ecol Notes 4:477–479

    Article  CAS  Google Scholar 

  • Ahmad P, Sharma S, Srivastava PS (2007) In vitro selection of NaHCO3 tolerant cultivars of Morus alba (Local and Sujanpuri) in response to morphological and biochemical parameters. Hort Sci (Prague) 34(3):114–122

    CAS  Google Scholar 

  • Akram M, Aftab F (2012) Efficient micropropagation and rooting of king white mulberry (Morus macroura Miq.) var. laevigata from nodal explants of mature tree. Pak J Bot 44:285–289

    CAS  Google Scholar 

  • Anil Kumar HV, Muralidhar TS, Munirajappa R (2012) RAPD analysis of EMS mutagenised mulberry genotype RFS135. Schol J Biotech 1:1–7

    Google Scholar 

  • Anis M, Faisal M, Singh SK (2003) Micropropagation of mulberry (Morus alba L.) through in vitro culture of shoot tip and nodal explants. Plant Tiss Cult 13:47–51

    Google Scholar 

  • Anuradha JH, Vijayan K, Nair CV, Manjula A (2013) A novel and efficient protocol for the isolation of genomic DNA from mulberry (Morus L.). Emir J Food Agr 25:124–131

    Article  Google Scholar 

  • Arora V, Ghosh MK, Gangopadhyay G (2014) SSR markers for assessing the hybrid nature of two high yielding mulberry varieties. Int J Genet Eng Biotechnol 52:191–196

    Google Scholar 

  • Awasthi AK, Nagaraja GM, Naik GV, Kanginakudru S, Thangavelu K, Nagaraju J (2004) Genetic diversity and relationships in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genet 5:1. doi:10.1186/1471-2156-5-1

    Article  Google Scholar 

  • Balakrishnan V, Latha MR, Ravindran KC, Robinson JP (2009) Clonal propagation of Morus alba L. through nodal and axillary bud explants. Bot Res Int 2:42–49

    CAS  Google Scholar 

  • Banerjee R, Chattopadhyay S, Saha AK (2016) Genetic diversity and relationship of mulberry genotypes revealed by RAPD and ISSR markers. J Crop Improv. doi:10.1080/15427528.2016.1177803

    Google Scholar 

  • Baranwal VK, Negi N, Khurana P (2016) Genome-wide identification and structural, functional and evolutionary analysis of WRKY components of mulberry. Sci Rep 6:30794. doi:10.1038/srep30794

    Article  CAS  Google Scholar 

  • Bhatnagar S, Khurana P (2003) Agrobacterium tumefaciens-mediated transformation of Indian mulberry, Morus indica cv. K-2: a time-phased screening strategy. Plant Cell Rep 21(7):669–675

    CAS  Google Scholar 

  • Bhatnagar S, Kapur A, Khurana P (2001) TDZ mediated differentiation in commercially valuable Indian mulberry, Morus indica cultivars K2 and DD. Plant Biotechnol 18:61–65

    Article  CAS  Google Scholar 

  • Bhatnagar S, Kapur A, Khurana P (2002) Evaluation of parameters for high efficiency gene transfer via particle bombardment in Indian mulberry. Indian J Exp Biol 40:1387–1393

    CAS  Google Scholar 

  • Bhattacharya E, Ranade SA (2001) Molecular distinction among varieties of mulberry using RAPD and DAMD profiles. BMC Plant Biol 1:3. doi:10.1186/1471-2229-1-3

    Article  CAS  Google Scholar 

  • Bhau BS, Wakhlu AA (2001) Effect of genotype, explant type and growth regulators on organogenesis in Morus alba. Plant Cell Tiss Organ Cult 66:25–29

    Article  CAS  Google Scholar 

  • Bhau BS, Wakhlu AK (2003) Rapid micropropagation of five cultivars of mulberry. Biol Plant 46:349–355

    Article  Google Scholar 

  • Central Silk Board (2015). Annual report 2014–15. Retrieved from http://www.csb.gov.in/assets/Uploads/pdf-files/Graph-English-1415.pdf

  • Chattopadhyay S, Doss SG, Halder S, Ali AK, Bajpai AK (2011) Comparative micropropagation efficiency of diploid and triploid mulberry (Morus alba cv. S1) from axillary bud explants. Afr J Biotechnol 10(79):18153–18159

    Article  Google Scholar 

  • Checker VG, Khurana P (2013) Molecular and functional characterization of mulberry EST encoding remorin (MiREM) involved in abiotic stress. Plant Cell Rep 32:1729–1741

    Article  CAS  Google Scholar 

  • Checker VG, Chibbar AK, Khurana P (2012a) Stress-inducible expression of barley hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res 21(5):939–957

    Article  CAS  Google Scholar 

  • Checker VG, Saeed B, Khurana P (2012b) Analysis of expressed sequence tags from mulberry (Morus indica) roots and implications for comparative transcriptomics and marker identification. Tree Genet Genomes 8:1437–1450

    Article  Google Scholar 

  • Chen C, Zhou W, Huang Y, Wang ZZ (2015) The complete chloroplast genome sequence of the mulberry Morus notabilis (Moreae), mitochondrial DNA. J DNA Mapp Seq Anal. doi:10.3109/19401736.2015.1053127

    Google Scholar 

  • Chikkaswamy BK, Prasad MP (2012) Evaluation of genetic diversity and relationships in mulberry varieties using RAPD and ISSR molecular markers. Int J Mol Biol 3:2–70

    Google Scholar 

  • Chikkaswamy BK, Paramanik RC, Debnath A, Sadana MS (2012) Evaluation of genetic diversity in mulberry varieties using molecular markers. Nature Sci 10:45–60

    Google Scholar 

  • Chitra DSV, Padmaja G (2002) Seasonal influence on axillary bud sprouting and micropropagation of elite cultivars of mulberry. Sci Hort 92:55–68

    Article  Google Scholar 

  • Chitra DSV, Padmaja G (2005) Shoot regeneration via direct organogenesis from in vitro derived leaves of mulberry using thidiazuron and 6-benzylaminopurine. Sci Hort 106:593–602

    Article  CAS  Google Scholar 

  • Chitra DSV, Chinthapalli B, Padmaja G (2014) Efficient regeneration system for genetic transformation of mulberry (Morus indica L. Cultivar S-36) using in vitro derived shoot meristems. Am J Plant Sci 5:1–6

    Article  CAS  Google Scholar 

  • Choudhary R, Chaudhury R, Malik SK, Kumar S, Pal D (2013) Genetic stability of mulberry germplasm after cryopreservation by two-step freezing technique. Afr J Biotechnol 12(41):5983–5993

    Article  CAS  Google Scholar 

  • Dai F, Tang C, Wang Z, Luo G, He L, Yao L (2015) De novo assembly, gene annotation, and marker development of mulberry (Morus atropurpurea) transcriptome. Tree Genet Genomes 11:26. doi:10.1007/s11295-015-0851-4

    Article  Google Scholar 

  • Das M, Chauhan H, Chhibbar A, Haq QMR, Khurana P (2011) High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K-2, by constitutive and inducible expression of tobacco Osmotin. Transgenic Res 20(2):231–246

    Article  CAS  Google Scholar 

  • Das M, Tetoriya M, Haq QMR, Khurana P (2013) Screening and expression analysis of hal3a, dehydrin and nhx1 in ten genotypes of mulberry for abiotic stress tolerance. Sericologia 53(2):1–10

    Google Scholar 

  • Dhanyalakshmi KH, Naika MBN, Sajeevan RS, Mathew OK, Shafi KM, Sowdhamini R, Nataraja KN (2016) An approach to function annotation for proteins of unknown function (PUFs) in the transcriptome of Indian mulberry. PLoS One 11(3):e0151323. doi:10.1371/journal.pone.0151323

    Article  CAS  Google Scholar 

  • Doss SG, Chakraborti SP, Roychowdhuri S, Das NK, Vijayan K, Ghosh PD (2012) Development of mulberry varieties for sustainable growth and leaf yield in temperate and subtropical regions of India. Euphytica 185(2):215–225

    Article  Google Scholar 

  • Feng LC, Guangwei Y, Maode Y, Yifu K, Chenjun J, Zhonghuai Y (1996) Studies on the genetic identities and relationships of mulberry cultivated species (Morus L.) by a random amplified polymorphic DNA assay. Acta Sericol Sin 22:135–139

    CAS  Google Scholar 

  • Gulyani V, Khurana P (2011) Identification and expression profiling of drought-regulated genes in mulberry (Morus sp.) by suppression subtractive hybridization of susceptible and tolerant cultivars. Tree Genet Genomes 7:725–738

    Article  Google Scholar 

  • Guruprasad Krishnan RR, Dandin SB, Naik VG (2014) Groupwise sampling: a strategy to sample core entries from RAPD marker data with application to mulberry. Trees 28:723–731

    Article  CAS  Google Scholar 

  • He N, Zhang C, Qi X, Zhao S, Tao Y, Yang G, Lee TH, Wang X, Cai Q, Li D, Lu M, Liao S, Luo G, He R, Tan X, Xu Y, Li T, Zhao A, Jia L, Fu Q, Zeng Q, Gao C, Ma B, Liang J, Wang X, Shang J, Song P, Wu H, Fan L, Wang Q, Shuai Q, Zhu J, Wei C, Zhu-Salzman K, Jin D, Wang J, Liu T, Yu M, Tang C, Wang Z, Dai F, Chen J, Liu Y, Zhao S, Lin T, Zhang S, Wang J, Wang J, Yang H, Yang G, Wang J, Paterson AH, Xia Q, Ji D, Xiang Z (2013) Draft genome sequence of the mulberry tree Morus notabilis. Nature Commun 4:2445. doi:10.1038/ncomms3445

    Article  CAS  Google Scholar 

  • Hossain M, Rahama SM, Jorder OI (1991) Isolation of sodium chloride resistant genotypes in mulberry cultivars. Bull Sericult Res 2:67–73

    Google Scholar 

  • Hossain M, Rahman SM, Zaman A, Jorder OI, Islam R (1992) Micropropagation of M. laevigata Wall. from matured trees. Plant Cell Rep 11:522–527

    Article  CAS  Google Scholar 

  • Huang R-Z, Yan X-P, Li J, Zhang X-W (2009) AFLP finger print analysis for 10 mulberry cultivars in Hunan province. Sci Seric 35:837–841

    CAS  Google Scholar 

  • Ipek M, Pirlak L, Kafkas S (2012) Molecular characterization of mulberry (Morus spp.) genotypes via RAPD and ISSR. J Sci Food Agr 92:1633–1637

    Article  CAS  Google Scholar 

  • Jain AK, Sarkar A, Datta RK (1996) Induction of haploid callus and embryogenesis in in vitro cultured anthers of mulberry (Morus indica). Plant Cell Tiss Organ Cult 44:143–147

    Article  Google Scholar 

  • Jianzhong T, Chengfu L, Hongli W, Mingqi C (2001) Transgenic plants via transformation of glycinin gene to mulberry. J Agr Biotechnol 9(4):400–402

    Google Scholar 

  • Kafkas S, Ozgen M, Dogan Y, Ozgen B, Ercisli S, Serce S (2008) Molecular characterization of mulberry accessions in Turkey by AFLP markers. J Am Soc Hort Sci 133:593–597

    Google Scholar 

  • Kapur A, Bhatnagar S, Khurana P (2001) Efficient regeneration from mature leaf explants of Indian mulberry via organogenesis. Sericologia 41:207–214

    Google Scholar 

  • Kar P, Srivastava PP, Awasthi AK, Urs SR (2008) Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.) genetic resources available in India. Tree Genet Genomes 4:75–83

    Article  Google Scholar 

  • Kavyashree R (2007) A repeatable protocol for in vitro micropropagation of mulberry variety S54. Indian J Biotechnol 6:385–388

    CAS  Google Scholar 

  • Khurana P, Checker VG (2011) The advent of genomics in mulberry and perspectives for productivity enhancement. Plant Cell Rep 30:825–838

    Article  CAS  Google Scholar 

  • Kim HR, Patel KR, Thorpe TA (1985) Regeneration of mulberry plants through tissue culture. Bot Gazette 146:335–340

    Article  Google Scholar 

  • Krishnan RR, Naik VG, Ramesh SR, Qadri SMH (2013) Microsatellite marker analysis reveals the events of the introduction and spread of cultivated mulberry in the Indian subcontinent. Plant Genet Resour 12(1):129–139

    Article  Google Scholar 

  • Krishnan RR, Sumathy R, Bindroo BB, Naik VG (2014) MulSatDB: a first online database for mulberry microsatellites. Trees 28:1793–1799

    Article  CAS  Google Scholar 

  • Lakshmi Sita G, Ravindran S (1991) Gynogenic plants from ovary cultures of mulberry (Morus indica). In: Prakash J, Pierik KLM (eds) Horticulture new techniques and applications. Kluwer, London, pp 225–229

    Chapter  Google Scholar 

  • Lal S, Gulyani V, Khurana P (2008) Overexpression of hva1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res 17:651–663

    Article  CAS  Google Scholar 

  • Lal S, Ravi V, Khurana JP, Khurana P (2009) Repertoire of leaf expressed sequence tags (ESTs) and partial characterization of stress-related and membrane transporter genes from mulberry (Morus indica L.). Tree Genet Genomes 5(2):359–374

    Article  Google Scholar 

  • Lalitha N, Kih S, Banerjee R, Chattopadhya S, Saha AK, Bindroo BB (2013) High frequency multiple shoot induction and in vitro regeneration of mulberry (Morus indica L. cv. S-1635). Int J Adv Res 1:22–26

    Google Scholar 

  • Li T, Qi X, Zeng Q, Xiang Z, He N (2014) MorusDB: a resource for mulberry genomics and genome biology. Database, 2014, p.bau054

  • Lin Z, Weiguo Z, Junbai C, Yong H, Xing JS, Liu L, Qiang S (2011) Analysis of genetic diversity and construction of core collection of local mulberry varieties from Shanxi Province based on ISSR marker. Afr J Biotech 10:7756–7765

    Article  Google Scholar 

  • Liu XQ, Liu CY, Guo Q, Zhang M, Cao BN, Xiang ZH, Zhao AC (2015) Mulberry transcription factor MnDREB4A confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One 10(12):e0145619. doi:10.1371/journal.pone.0145619

    Article  CAS  Google Scholar 

  • Lou CF, Zhang YZ, Zhou JM (1998) Polymorphisms of genomic DNA in parents and their resulting hybrids in mulberry (Morus). Sericologia 38:437–445

    Google Scholar 

  • Lu M-C (2002) Micropropagation of Morus latifolia Poilet using axillary buds from mature trees. Sci Hort 96:329–341

    Article  CAS  Google Scholar 

  • Machii M (1990) Leaf disc transformation of mulberry plant (Morus alba L.) by Agrobacterium Ti plasmid. J Sericult Sci Jpn 59:105–110

    Google Scholar 

  • Machii M, Sung GB, Yamanuchi H, Koyama A (1996) Transient expression of GUS gene introduced into mulberry plant by particle bombardment. J Sericult Sci Jpn 65:503–506

    CAS  Google Scholar 

  • Mamrutha HM, Nataraja KN, Rama N, Kosma DK, Mogili T, Lakshmi KJ, Kumar MD, Jenks MA (2017) Leaf surface wax composition of genetically diverse mulberry (Morus sp.) genotypes and its close association with expression of genes involved in wax metabolism. Curr Sci 112(4):759–766

    Article  Google Scholar 

  • Mishra S (2014) Genetic analysis of traits controlling water use efficiency and rooting in mulberry (Morus spp.) by molecular markers. Ph.D. Thesis, University of Mysore, Mysuru, India

  • Mishra S, Dandin SB (2010) Molecular characterization of mulberry genotypes in relation to photosynthetic efficiency. Indian J Seric 49(1):50–57

    Google Scholar 

  • Mishra S, Naik VG, Sukumar M, Pinto MV, Sheshashayee MS, Dandin SB (2013) Genetic analysis of parental genotypes for mapping of water use efficiency and root traits in mulberry. Indian J Genet Plant Breed (The) 73(4):405–410

    Article  Google Scholar 

  • Mishra GP, Singh B, Seth T, Singh AK, Halder J, Krishnan N, Tiwari SK, Singh PM (2017) Biotechnological advancements and begomovirus management in okra (Abelmoschus esculentus L.): status and perspectives. Front Plant Sci 8:360. doi:10.3389/fpls.2017.00360

    Google Scholar 

  • Mogili T, Rajashekar K, Tripathi PM, Sathyanarayana K, Balakrishna R, Reddy MM (2008) Screening mulberry genotypes for tolerance to alkalinity stress. Adv Plant Sci 2:621–629

    Google Scholar 

  • Naik VG, Sarkar A, Sathyanarayana N (2002) DNA finger printing of Mysore Local and V1 cultivars of mulberry (Morus spp.) with RAPD markers. Indian J Genet 62:193–196

    CAS  Google Scholar 

  • Naik VG, Subbulakshmi N, Pinto MV, Mishra S, Guruprasad Qadri SMH (2013) Assessment of genetic diversity among mulberry collections from South India using phenotypic and RAPD markers. Indian J Seric 52(1):34–43

    Google Scholar 

  • Naik VG, Thumilan B, Sarkar A, Dandin SB, Pinto MV, Sivaprasad V (2014) Development of genetic linkage map of mulberry using molecular markers and identification of QTLs linked to yield and yield contributing traits. Sericologia 54(4):221–229

    Google Scholar 

  • Naik VG, Dandin SB, Tikader A, Pinto MV (2015) Molecular diversity of wild mulberry (Morus spp.) of Indian subcontinent. Indian J Biotechnol 14(3):334–343

    CAS  Google Scholar 

  • Narayan P, Chakraborty SP, Rao GS (1989) Regeneration of plantlets from the callus of stem segments of mature plants of Morus alba L. Proc Indian Natl Sci Acad B 55:469–472

    Google Scholar 

  • Ohnishi T, Kiyama S (1987) Effects of change in temperature, pH, Ca ion concentration in the solution used for protoplast fusion on the improvement of the fusion ability of mulberry protoplasts. J Sericult Sci Jpn 56:418–421

    CAS  Google Scholar 

  • Ohnishi T, Tanabe K (1989) On the protoplast fusion of mulberry and paper mulberry by electrofusion method. J Seri Scricult Jpn 58:353–354

    Google Scholar 

  • Ohyama K, Oka S (1976) Regeneration of whole plants from isolated shoot tips of mulberry. J Sericult Sci Jpn 45:115–120

    Google Scholar 

  • Oka S, Tewary PK (2000) Induction of hairy roots from hypocotyls of mulberry (Morus indica L.) by Japanese wild strains of Agrobacterium rhizogenes. J Sericult Sci Jpn 69:13–19

    CAS  Google Scholar 

  • Orhan E, Ercisli S, Yildirim N, Agar G (2007) Genetic variations among mulberry genotypes (Morus alba) as revealed by random amplified polymorphic DNA (RAPD) markers. Plant Syst Evol 265:251–258

    Article  CAS  Google Scholar 

  • Ozrenk K, Sensoy RIG, Erdinc C, Guleryuz M, Aykanat A (2010) Molecular characterization of mulberry germplasm from Eastern Anatolia. Afr J Biotech 9:1–6

    CAS  Google Scholar 

  • Ping LX, Nogawa M, Shioiri H, Nozue M, Makita N, Takeda M, Bao L, Kojima M (2003) In planta transformation of mulberry trees (Morus alba L.) by Agrobacterium tumefaciens. J Insect Biotechnol Sericol 72(3):177–184

    Google Scholar 

  • Pinto MV, Naik VG, Qadri SMH (2012) Genetic variability studies in mulberry using microsatellite markers. J Sericult Technol 3(1–2):38–43

    Google Scholar 

  • Raghunath MK, Lal S, Khurana P (2008) In vitro plant regeneration from different explants of elite mulberry (Morus sp.) genotypes AR12, DD and S13. Bangladesh J Seric 2–3:31–39

    Google Scholar 

  • Raghunath MK, Nataraj KN, Meghana JS, Sanjeevan RS, Rajan MV, Qadri SMH (2013) In vitro plant regeneration of Morus indica L. cv. V-1 using leaf explants. Am J Plant Sci 4(10):2001–2005

    Article  CAS  Google Scholar 

  • Rani R, Yadav P, Barbadikar KM, Baliyan N, Malhotra EV, Singh BK, Kumar A, Singh D (2016) CRISPR/Cas9: a promising way to exploit genetic variation in plants. Biotechnol Lett 38(12):1991–2006

    Article  CAS  Google Scholar 

  • Rao PJSVVNH, Nuthan D, Krishna KS (2010a) A protocol for in vitro regeneration of rainfed mulberry varieties through callus phase. Euro J Biol Sci 2:80–86

    Google Scholar 

  • Rao PJSVVNH, Nuthan D, Krishna KS, Basavaraja MK (2010b) In vitro propagation of irrigated mulberry varieties using nodal explants. Curr Biotica 3:555–564

    Google Scholar 

  • Ravi V, Khurana JP, Tyagi AK, Khurana P (2006) The chloroplast genome of mulberry: complete nucleotide sequence, gene organization and comparative analysis. Tree Genet Genomes 3:49–59

    Article  Google Scholar 

  • Ravi V, Tyagi AK, Khurana JP, Khurana P (2008) An update on chloroplast genomes. Plant Syst Evol 271:101–122

    Article  CAS  Google Scholar 

  • Saeed B, Khurana P (2016) Transcription activation activity of ERD15 protein from Morus indica. Plant Physiol Biochem. doi:10.1016/j.plaphy.2016.11.020

    Google Scholar 

  • Saeed B, Das M, Haq QMR, Khurana P (2015) Overexpression of beta carotene hydroxylase-1 (bch1) in mulberry, Morus indica cv. K-2, confers tolerance against high-temperature and high-irradiance stress induced damage. Plant Cell Tiss Organ Cult 120(3):1003–1015

    Article  CAS  Google Scholar 

  • Saeed B, Baranwal VK, Khurana P (2016a) Comparative transcriptomics and comprehensive marker resource development in mulberry. BMC Genomics 17:98. doi:10.1186/s12864-016-2417-8

    Article  CAS  Google Scholar 

  • Saeed B, Baranwal VK, Khurana P (2016b) Identification and expression profiling of Lectin gene superfamily in mulberry. Plant Genome 9(2). doi: 10.3835/plantgenome2015.10.0107

  • Saha S, Adhikari S, Dey T, Ghosh P (2016) RAPD and ISSR based evaluation of genetic stability of micropropagated plantlets of Morus alba L. variety S-1. Meta Gene 7:7–15

    Article  Google Scholar 

  • Sajeevan RS, Nataraja KN (2016) Molecular cloning and characterization of a novel basic helix–loop–helix-144 (bHLH144)-like transcription factor from Morus alba (L.). Plant Gene 5:109–117

    Article  CAS  Google Scholar 

  • Sajeevan RS, Singh SJ, Nataraja KN, Shivanna MV (2011) An efficient in vitro protocol for multiple shoot induction in mulberry, Morus alba L variety V1. Intl Res J Plant Sci 2:254–261

    Google Scholar 

  • Sajeevan RS, Nataraja KN, Shivashankara KS, Pallavi N, Gurumurthy DS, Shivanna MB (2017) Expression of Arabidopsis SHN1 in Indian mulberry (Morus indica L.) increases leaf surface wax content and reduces post-harvest water loss. Front Plant Sci 8:418. doi:10.3389/fpls.2017.00418

    Article  CAS  Google Scholar 

  • Sarkar T, Radhakrishnan T, Kumar A, Mishra GP, Dobaria JR (2014) Heterologous expression of AtDREB1A gene in transgenic peanut conferred tolerance to drought and salinity stresses. PLoS One 9(12):e110507. doi:10.1371/journal.pone.0110507

    Article  CAS  Google Scholar 

  • Sarkar T, Radhakrishnan T, Kumar A, Mishra GP, Dobaria JR (2016) Stress inducible expression of AtDREB1A transcription factor in transgenic peanut (Arachis hypogaea L.) crop conferred tolerance to soil-moisture deficit stress. Front Plant Sci 7:935. doi:10.3389/fpls.2016.00935

    Article  Google Scholar 

  • Schmitz RJ, Zhang X (2011) High-throughput approaches for plant epigenomic studies. Curr Opin Plant Biol 14:130–136

    Article  CAS  Google Scholar 

  • Sharma AC, Sharma R, Machii H (2000) Assessment of genetic diversity in a Morus germplasm collection using fluorescence-based AFLP markers. Theor Appl Genet 101:1049–1055

    Article  CAS  Google Scholar 

  • Shoukang L, Dongfeng J, Jun Q (1987) In vitro production of haploid plants from mulberry (Morus) anther culture. Sci Sinica 30:853–863

    Google Scholar 

  • Sugimura Y, Miyazaki J, Yonebayashi K, Kotani E, Furusawa T (1999) Gene transfer by electroporation into protoplasts isolated from mulberry call. J Sericult Sci Jpn 68:49–53

    Google Scholar 

  • Susheelamma BN, Kumar JS, Mogili T, Sengupta K, Padma MN, Suryanarayana N (1992) Evaluation techniques for screening for drought resistance in mulberry. Sericologia 32:609–614

    Google Scholar 

  • Susheelamma BN, Shekhar KR, Sarkar A, Rao MR, Datta RK (1996) Genotypes and hormonal effects on callus formation and regeneration in mulberry. Euphytica 90:25–29

    CAS  Google Scholar 

  • Tewary PK, Sharma A, Raghunath MK, Sarkar A (2000) In vitro response of promising mulberry (Morus sp.) genotypes for tolerance to salt and osmotic stresses. Plant Growth Regul 30(1):17–21

    Article  CAS  Google Scholar 

  • Thomas TD (2003) Thidiazuron induced multiple shoot induction and plant regeneration from cotyledonary explants of mulberry. Biol Plant 46:529–533

    Article  CAS  Google Scholar 

  • Thomas TD, Bhatnagar AK, Rajdan MK, Bhojwani SS (1999) A reproducible protocol for the production gynogenic haploids of mulberry, Morus alba L. Euphytica 110:169–173

    Article  Google Scholar 

  • Thomas TD, Bhatnagar AK, Bhojwani SS (2000) Production of triploid plants of mulberry (Morus alba L.) by endosperm culture. Plant Cell Rep 19(4):395–399

    Article  CAS  Google Scholar 

  • Thumilan BM, Kadam NN, Biradar J, Sowmya HR, Mahadeva A, Madhura JN, Makarla U, Khurana P, Sreeman SM (2013) Development and characterization of microsatellite markers for Morus spp. and assessment of their transferability to other closely related species. BMC Plant Biol 13:194. doi:10.1186/1471-2229-13-194

    Article  CAS  Google Scholar 

  • Thumilan BM, Sajeevan RS, Biradar J, Madhuri T, Nataraja KN, Sreeman SM (2016) Development and characterization of genic SSR markers from Indian mulberry transcriptome and their transferability to related species of Moraceae. PLoS One 11(9):e0162909. doi:10.1371/journal.pone.0162909

    Article  CAS  Google Scholar 

  • Tikader A, Dandin SB (2008) DNA fingerprint of inter and intra-specific hybrids from Morus species using RAPD. Geobios 35:113–120

    CAS  Google Scholar 

  • Umate P (2010) Mulberry improvements via plastid transformation and tissue culture engineering. Plant Signal Behav 5(7):785–787

    Article  CAS  Google Scholar 

  • Umate P, Rao KV, Kiranmayee K, Jaya Sree T, Sadanandam A (2005) Plant regeneration of mulberry (Morus indica) from mesophyll-derived protoplasts. Plant Cell Tiss Organ Cult 82(3):289–293

    Article  CAS  Google Scholar 

  • Venkateswarlu M, Raje US, Surendra NB, Shashidhar HE, Maheswaran M, Veeraiah TM, Sabitha MG (2006) A first genetic linkage map of mulberry (Morus spp.) using RAPD, ISSR, and SSR markers and pseudotestcross mapping strategy. Tree Genet Genomes 3:15–24

    Article  Google Scholar 

  • Vijayan K (2010) The emerging role of genomic tools in mulberry (Morus) genetic improvement. Tree Genet Genomes 6:613–625

    Article  Google Scholar 

  • Vijayan K, Chakraborti SP, Roy BN (2000) Plant regeneration from leaf explants of mulberry: Influence of sugar, genotype and 6-benzyladenine. Indian J Exp Biol 38(5):504–508

    CAS  Google Scholar 

  • Vijayan K, Chakraborti SP, Ghosh PD (2003) In vitro screening of mulberry for salinity tolerance. Plant Cell Rep 22:350–357

    Article  CAS  Google Scholar 

  • Vijayan K, Srivastava PP, Awasthi AK (2004a) Analysis of phylogenetic relationship among five mulberry (Morus) species using molecular markers. Genome 47:439–448

    Article  CAS  Google Scholar 

  • Vijayan K, Chakraborti SP, Ghosh PD (2004b) Screening of mulberry (Morus spp.) for salinity tolerance through in vitro seed germination. Indian J Biotech 3:47–51

    Google Scholar 

  • Vijayan K, Srivastava PP, Nair CV, Tikader A, Awasthi AK, Urs SR (2006) Molecular characterization and identification of markers associated with leaf yield traits in mulberry using ISSR markers. Plant Breed 125:298–301

    Article  CAS  Google Scholar 

  • Vijayan K, Doss SG, Chakraborti SP, Ghosh PD (2009a) Breeding for salinity resistance in (Morus spp.). Euphytica 169(3):403–411

    Article  Google Scholar 

  • Vijayan K, Nair CV, Chatterjee SN (2009b) Diversification of mulberry (Morus indica var. S36), a vegetatively propagated tree species. Casp J Env Sci 7:23–30

    Google Scholar 

  • Vijayan K, Tikader A, da Silva JAT (2011) Application of tissue culture techniques propagation and crop improvement in mulberry (Morus spp). Tree For Sci Biotechnol 5(1):1–13

    Google Scholar 

  • Vijayan K, Raju PJ, Tikader A, Saratchnadra B (2014) Biotechnology of mulberry (Morus L.)—a review. Emir J Food Agr 26(6):472–496

    Google Scholar 

  • Wang ZW, Yu MD (2001) AFLP analysis of genetic background of polyploid breeding materials of mulberry. Acta Sericol Sin 27:170–176

    CAS  Google Scholar 

  • Wang H, Tong W, Feng L, Jiao Q, Long L, Fang R, Zhao W (2014a) De Novo transcriptome analysis of mulberry (Morus L) under drought stress using RNA seq technology. Russ J Bioorg Chem 40(4):423–432

    Article  CAS  Google Scholar 

  • Wang XL, Yu YS, Yang Y, Liu CY, Li J, Yu MD (2014b) Molecular cloning and expression of a nitrite reductase gene from mulberry (Morus L.). Plant Cell Tiss Organ Cult 121(2):301–309. doi:10.1007/s11240-014-0701-3

    Article  CAS  Google Scholar 

  • Wangari NP, Gacheri KM, Theophilus MM, Lucas N (2013) Use of SSR markers for genetic diversity studies in mulberry accessions grown in Kenya. Int J Biotech Mol Biol Res 4:38–44

    Article  CAS  Google Scholar 

  • Wani SA, Bhat MA, Malik GN, Zaki FA, Mir MR, Wani N, Bhat KM (2013) Genetic diversity and relationship assessment among mulberry (Morus spp.) genotypes by simple sequence repeat (SSR) marker profile. Afr J Biotech 12:3181–3187

    CAS  Google Scholar 

  • Weiguo Z, Zhihua Z, Xuexia M, Yong Z, Sibao W, Jianhua H, Hui X, Yile P, Yongping H (2007) A comparison of genetic variation among wild and cultivated Morus species (Moraceae: Morus) as revealed by ISSR and SSR markers. Biodiv Conserv 16:275–290

    Article  Google Scholar 

  • Xiang Z, Zhang Z, Yu M (1995) A preliminary report on the application of RAPD in systematics of Morus alba. Acta Sericol Sin 21:203–207

    Google Scholar 

  • Zaki M, Kaloo ZA, Sofi M (2011) Micropropagation of Morus nigra L. from nodal segments with axillary buds. World J Agr Sci 7:496–503

    CAS  Google Scholar 

  • Zhao WG, Pan YL (2002) RAPD analysis for the germplasm resources of genus mulberry. Acta Sericol Sin 26:1–8

    CAS  Google Scholar 

  • Zhao W, Miao X, Jia S, Pan Y, Huang Y (2005) Isolation and characterization of microsatellite loci from the mulberry, Morus L. Plant Sci 168:519–525

    Article  CAS  Google Scholar 

  • Zhao WG, Zhou ZH, Miao XX, Wang SB, Zhang L, Pan Y, Huang YP (2006) Genetic relatedness among cultivated and wild mulberry as revealed by inter-simple sequence repeat (ISSR) analysis in China. Can J Plant Sci 86:251–257

    Article  CAS  Google Scholar 

  • Zhao ZZ, Xuexia M, Yong Z, Sibao W, Jianhua H, Hui X, Yile P, Yongping H (2007a) A comparison of genetic variation among wild and cultivated Morus species (Moraceae: Morus) as revealed ISSR and SSR markers. Biodiv Conserv 16:275–290

    Article  Google Scholar 

  • Zhao W, Wang Y, Chen T, Jia G, Wang X, Qi J, Pang Y, Wang S, Li Z, Huang Y, Pan Y, Yang Y-H (2007b) Genetic structure of mulberry from different ecotypes revealed by ISSRs in China: an implications for conservation of local mulberry varieties. Sci Hort 115:47–55

    Article  CAS  Google Scholar 

  • Zhao WG, Wang W, Yang YH, Huang YP, Pan YL (2008) Genetic diversity of mulberry local varieties from different ecotype as revealed by ISSR analysis in China. Acta Sericol Sin 34:1–5

    Google Scholar 

  • Zhao W, Fang R, Pan Y, Yang Y, Chung JW, Chung IM, Park YJ (2009) Analysis of genetic relationships of mulberry (Morus L.) germplasm using sequence-related amplified polymorphism (SRAP) markers. Afr J Biotechnol 8:2604–2610

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Author contributions

Conceived the idea of the review paper: TS, VS, TM. Wrote the review paper: TS, TM. Edited the manuscript: VS, TS, TM.

Corresponding author

Correspondence to Tanmoy Sarkar.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, T., Mogili, T. & Sivaprasad, V. Improvement of abiotic stress adaptive traits in mulberry (Morus spp.): an update on biotechnological interventions. 3 Biotech 7, 214 (2017). https://doi.org/10.1007/s13205-017-0829-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0829-z

Keywords

Navigation