Skip to main content
Log in

Investigation of in vitro digestibility of dietary microalga Chlorella vulgaris and cyanobacterium Spirulina platensis as a nutritional supplement

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Microalgal proteins are promising sources for functional nutrition and a sustainable candidate for nutraceutical formulations. They also gain importance due to emerging focus on a healthy nutrition and increase in the number of chronic diseases. In this study, dried dietary species of microalga, Chlorella vulgaris, and cyanobacterium Spirulina platensis were hydrolyzed with pancreatin enzyme to obtain protein hydrolysates. The hydrolysis yield of biomass was 55.1 ± 0.1 and 64.8 ± 3.6% for C. vulgaris and S. platensis; respectively. Digestibility, as an indicator for dietary utilization, was also investigated. In vitro protein digestibility (IVPD) values depicted that cell wall structure due to the taxonomical differences affected both hydrolysis and digestibility yield of the crude biomass (p < 0.05). Epithelial cells (Vero) maintained their viability around 70%, even in relatively higher concentrations of hydrolysates in the culture. The protein hydrolysates showed no any antimicrobial activities. This study clearly shows that the conventional protein sources in nutraceutical formulations such as soy, whey, and fish proteins can be replaced by enzymatic hydrolysates of microalgae, which shows elevated digestibility values as a sustainable and reliable source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Becker EW (2007) Microalgae as a source of protein. Biotechnol Adv 25(2):207–210

    Article  CAS  Google Scholar 

  • Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 14(11):421–426

    Article  CAS  Google Scholar 

  • Cian RE, Martínez-Augustin O, Silvina RD (2012) Bioactive properties of peptides obtained by enzymatic hydrolysis from protein byproducts of Porphyra columbina. Food Res Int 49(1):364–372

    Article  CAS  Google Scholar 

  • Deniz I, Ozen MO, Yesil-Celiktas O (2016) Supercritical fluid extraction of phycocyanin and investigation of cytotoxicity on human lung cancer cells. J Supercrit Fluids 108:13–18

    Article  CAS  Google Scholar 

  • Gill I, López-Fandiño R, Jorba X, Vulfson EN (1996) Biologically active peptides and enzymatic approaches to their production. Enzyme Microb Technol 18(3):162–183

    Article  CAS  Google Scholar 

  • Hsu H, Vavak DL, Satterlee LD, Miller G (1977) A multienzyme technique for estimating protein digestibility. J Food Sci 42(5):1269–1273

    Article  CAS  Google Scholar 

  • Indumathi P, Mehta A (2016) A novel anticoagulant peptide from the nori hydrolysate. J Funct Food 20:606–617

    Article  CAS  Google Scholar 

  • Janczyk P, Franke H, Souffrant WB (2007) Nutritional value of Chlorella vulgaris: effects of ultrasonication and electroporation on digestibility in rats. Anim Feed Sci Tech 132:163–169

    Article  CAS  Google Scholar 

  • Kim SK, Wijesekara I (2010) Development and biological activities of marine-derived bioactive peptides: a review. J Funct Food 2(1):1–9

    Article  CAS  Google Scholar 

  • Ko SC, Kang N, Kim EA, Min CK, Lee SH, Kang SM, Lee JB (2012) A novel angiotensin I-converting enzyme (ACE) inhibitory peptide from a marine Chlorella ellipsoidea and its antihypertensive effect in spontaneously hypertensive rats. Process Biochem 47(12):2005–2011

    Article  CAS  Google Scholar 

  • Kong X, Guo M, Hua Y, Cao D, Zhang C (2008) Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Biores Technol 99(18):8873–8879

    Article  CAS  Google Scholar 

  • Kose A, Oncel SS (2015) Properties of microalgal enzymatic protein hydrolysates: biochemical composition, protein distribution and FTIR characteristics. Biotechnol Rep 6:137–143

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  • Mayer AMS, Rodríguez AD, Berlinck RGS, Hamann MT (2007) Marine pharmacology in 2003–4: marine compounds with anthelminthic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 145(4):553–581

    Article  Google Scholar 

  • Mayer AMS, Rodríguez AD, Berlinck RGS, Hamann MT (2009) Marine pharmacology in 2005–6: marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochim Biophys Acta 1790(5):283–308

    Article  CAS  Google Scholar 

  • Mendis E, Kim SK (2011) Present and future prospects of seaweeds in developing functional foods. Adv Food Nutr Res 64:1–15

    Article  CAS  Google Scholar 

  • Monks LM, Rigo A, Mazutti MA, Oliveira JV, Valduga E (2013) Use of chemical, enzymatic and ultrasound-assisted methods for cell disruption to obtain carotenoids. Biocatal Agric Biotechnol 2(2):165–169

    Google Scholar 

  • Morris HJ, Carrillo O, Almarales A, Bermúdez RC, Lebeque Y, Fontaine R, Llauradó G, Beltrán Y (2007) Immunostimulant activity of an enzymatic protein hydrolysate from green microalga Chlorella vulgaris on undernourished mice. Enzyme Microb Technol 40(3):456–460

    Article  CAS  Google Scholar 

  • Morris HJ, Almarales A, Carrillo O, Bermúdez RC (2008) Utilisation of Chlorella vulgaris cell biomass for the production of enzymatic protein hydrolysates. Biores Technol 99(16):7723–7729

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  Google Scholar 

  • Oncel SS (2013) Microalgae for a macroenergy world. Renew Sust Energ Rev 26:241–264

    Article  Google Scholar 

  • Oncel S, Vardar-Sukan F (2008) Comparison of two different pneumatically mixed column photobioreactors for the cultivation of Artrospira platensis (Spirulina platensis)”. Biores Technol 99(11):4755–4760

    Article  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648

    Article  CAS  Google Scholar 

  • Sheih IC, Wu TK, Fang TJ (2009) Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Biores Technol 100(13):3419–3425

    Article  CAS  Google Scholar 

  • Suetsuna K, Chen JR (2001) Identification of antihypertensive peptides from peptic digest of two microalgae, Chlorella vulgaris and Spirulina platensis. Mar Biotechnol 3(4):305–309

    Article  CAS  Google Scholar 

  • Syed S, Arasu A, Ponnuswamy I (2015) The uses of Chlorella vulgaris as antimicrobial agent and as a diet: the presence of bio-active compounds which caters the vitamins, minerals in general. Int J Bio Sci Bio Technol 7(1):185–190

    Article  Google Scholar 

  • Thangam R, Suresh V, Asenath Princy W, Rajkumar M, Senthilkumar N, Gunasekaran P, Rengasamy R, Anbazhagan C, Kaveri K, Kannan S (2013) C-Phycocyanin from Oscillatoria tenuis exhibited an antioxidant and in vitro antiproliferative activity through induction of apoptosis and G 0/G1 cell cycle arrest. Food Chem 140(1–2):262–272

    Article  CAS  Google Scholar 

  • Vo TS, Ryu BM, Kim SK (2013) Purification of Novel anti-inflammatory peptides from enzymatic hydrolysate of the edible microalgal Spirulina maxima. J Funct Food 5(3):1336–1346

    Article  CAS  Google Scholar 

  • Wan HDM, Chen CC, Huynh P, Chang JS (2014) Exploring the potential of using algae in cosmetics. Biores Technol 31:355–362

    Google Scholar 

  • Yalci HT, Ozen MO, Gocmen B, Nalbantsoy A (2014) Effect of Ottoman viper [Montivipera xanthina (Gray, 1849)] venom on various cancer cells and on microorganisms”. Cytotechnology 66(1):87–94

    Article  Google Scholar 

  • Zhao X, Peng F, Cheng K, Liu D (2009) Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali–peracetic acid pretreatment. Enzyme Microb Technol 44(1):17–23

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Fazilet Vardar-Sukan, Prof. Figen Zihnioglu, and also Dr. Zeliha Demirel from Ege University for their valuable discussions, advices, and shares on their expertise related to the subject; to the EGERT Inc. for their kind donation of Spirulina platensis biomass; to Prof. Ismet Deliloglu-Gurhan for supplying the cell line; and, finally, to Ege University Scientific Research Projects (BAP) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Elibol.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kose, A., Ozen, M.O., Elibol, M. et al. Investigation of in vitro digestibility of dietary microalga Chlorella vulgaris and cyanobacterium Spirulina platensis as a nutritional supplement. 3 Biotech 7, 170 (2017). https://doi.org/10.1007/s13205-017-0832-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0832-4

Keywords

Navigation