Skip to main content
Log in

Endophytic bacteria: a new source of bioactive compounds

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In recent years, bioactive compounds are in high demand in the pharmaceuticals and naturopathy, due to their health benefits to human and plants. Microorganisms synthesize these compounds and some enzymes either alone or in association with plants. Microbes residing inside the plant tissues, known as endophytes, also produce an array of these compounds. Endophytic actinomycetes act as a promising resource of biotechnologically valuable bioactive compounds and secondary metabolites. Endophytic Streptomyces sp. produced some novel antibiotics which are effective against multi-drug-resistant bacteria Antimicrobial agents produced by endophytes are eco-friendly, toxic to pathogens and do not harm the human. Endophytic inoculation of the plants modulates the synthesis of bioactive compounds with high pharmaceutical properties besides promoting growth of the plants. Hydrolases, the extracellular enzymes, produced by endophytic bacteria, help the plants to establish systemic resistance against pathogens invasion. Phytohormones produced by endophytes play an essential role in plant development and drought resistance management. The high diversity of endophytes and their adaptation to various environmental stresses seem to be an untapped source of new secondary metabolites. The present review summarizes the role of endophytic bacteria in synthesis and modulation of bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahsan T, Chen J, Zhao X, Irfan M, Wu Y (2017) Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Expr 7:54. doi:10.1186/s13568-017-0351-z

    Article  CAS  Google Scholar 

  • Al Othman ZA, Ahmed YB, Habila MA, Ghafar AA (2011) Determination of capsaicin and dihydrocapsaicin in capsicum fruit samples using high performance liquid chromatography. Molecules 16:8919–8929. doi:10.3390/molecules16108919

    Article  CAS  Google Scholar 

  • Aranda FJ, Teruel JA, Ortiz A (2005) Further aspects on the haemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys Acta 1713:51–56. doi:10.1016/j.bbamem.2005.05.003

    Article  CAS  Google Scholar 

  • Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P et al (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614. doi:10.1016/j.biotechadv.2015.08.001

    Article  CAS  Google Scholar 

  • Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker Inc., New York

    Google Scholar 

  • Bae M, Chung B, Oh KB, Shin J, Oh DC (2015) Hormaomycins B and C: new antibiotic cyclic depsipeptides from a marine mudflat-derived Streptomyces sp. Mar Drugs 13:5187–5200. doi:10.3390/md13085187

    Article  CAS  Google Scholar 

  • Balagurunathan R, Radhakrishnan M (2010) Biotechnological, genetic engineering and nanotechnological potential of actinomycetes. In: Maheshwari DK, Dubey RC, Saravanamurthu R (eds) Industrial exploitation of microorganisms, 1st edn. I.K. International Publishing House Pvt. Ltd, New Delhi, pp 302–436

    Google Scholar 

  • Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R (2009) Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug Chem 20:1497–1502

    Article  CAS  Google Scholar 

  • Barry CE (2014) Tuberculosis drug discovery goes au naturel. Nature 27:436–437. doi:10.1038/506436a

    Article  CAS  Google Scholar 

  • Battistoni F, Bartels D, Kaiser O, Reamon-Buettner MS, Hurek T, Reinhold Hurek B (2005) Physical map of the Azoarcus sp. strain BH72 genome based on a bacterial artificial chromosome library as a platform for genome sequencing and functional analysis. FEMS Microbiol Lett 249:233–240

    Article  CAS  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26. doi:10.1038/ja.2005.1

    Article  CAS  Google Scholar 

  • Bogner CW, Kamdem RST, Sichtermann G, Mattheaus C, Heolscher D, Popp J, Proksch P, Grundler FMW, Schouten A (2017) Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb Biotechnol 10:175–188. doi:10.1111/1751-7915.12467

    Article  CAS  Google Scholar 

  • Bonilla A, Sarria ALF, Algar E, Munoz Ledesma FJ, Solano BR, Fernandes JB, Gutierrez Manero FJ (2014) Microbe associated molecular patterns from rhizosphere bacteria trigger germination and Papaver somniferum metabolism under greenhouse conditions. Plant Physiol Biochem 74:133–140. doi:10.1016/j.plaphy.2013.11.012

    Article  CAS  Google Scholar 

  • Brayfield A (ed) (2013) Doxorubicin. Martindale: the complete drug reference. Pharmaceut Press. Retrieved 15 April 2014

  • Bull AT, Stach JE (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499

    Article  CAS  Google Scholar 

  • Cammack R, Atwood T, Campell P, Parish H, Smith A, Vella F, Stirling J (2006) Oxford dictionary of biochemistry and molecular biology, 2nd edn. Oxford University Press, Oxford, pp 74–75

    Book  Google Scholar 

  • Carvalho PLN, Silva EO, Paula DAC, Luiz JHH, Ikegaki M (2016) Importance and implications of the production of phenolic secondary metabolites by endophytic fungi: a mini-review. Mini Rev Med Chem 16:259–271

    Article  CAS  Google Scholar 

  • Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robinson R, Condron MA, Teplow DB et al (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiol 148:2675–2685. doi:10.1099/00221287-148-9-2675

    Article  CAS  Google Scholar 

  • Castillo U, Harper JK, Strobel GA, Sears J, Alesi K, Ford E, Lin J, Hunter M, Maranta M, Ge H et al (2003) Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566 an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett 224:183–190. doi:10.1016/S0378-1097(03)00426-9

    Article  CAS  Google Scholar 

  • Chang CL, Lin Y, Bartolome AP, Chen YC, Chiu SC, Yang WC (2013) Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds. Evid Base Complement Altern Med 2013:378657

    Google Scholar 

  • Chen F, Ren CG, Zhou T, Wei YJ, Dai CC (2016) A novel exopolysaccharide elicitor from endophytic fungus Gilmaniella sp. AL12 on volatile oils accumulation in Atractylodes lancea. Sci Rep 6:34735. doi:10.1038/srep34735

    Article  CAS  Google Scholar 

  • Chen YT, Yuan Q, Shan LT, Lin MA, Cheng DQ, Li CY (2013) Anti-tumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicas. Oncol Lett 5:1787–1792. doi:10.3892/ol.2013.1284

    Google Scholar 

  • Chi F, Shen S, Cheng H, Jing Y, Yanni Y, Dazzo F (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278

    Article  CAS  Google Scholar 

  • Christina A, Christapher V, Bhore SJ (2013) Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacogn Rev 7:11–16. doi:10.4103/0973-7847.112833

    Article  Google Scholar 

  • Clark R, Lee S (2016) Anti-cancer properties of capsaicin against human cancer. Anticancer Res 36:837–844

    CAS  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462. doi:10.1139/B09-023

    Article  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Aitbarka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. Strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  Google Scholar 

  • Danshiitsoodol N, Pinho CA, Matoba Y, Kumagai T, Sugiyama M (2006) The mitomycin C (MMC)-binding protein from MMC-producing microorganisms protects from the lethal effect of bleomycin: crystallographic analysis to elucidate the binding mode of the antibiotic to the protein. J Mol Biol 360:398–408. doi:10.1016/j.jmb.2006.05.017

    Article  CAS  Google Scholar 

  • Darshan N, Manonmani HK (2015) Prodigiosin and its potential applications. J Food Sci Technol 52:5393–5407. doi:10.1007/s13197-015-1740-4

    Article  CAS  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng 69:1–39

    CAS  Google Scholar 

  • Devari S, Jaglan S, Kumar M, Deshidi R, Guru S, Bhushan S et al (2014) Capsaicin production by Alternaria alternata, an endophytic fungus from Capsicum annum, LC–ESI–MS/MS analysis. Phytochemistry 98:183–189

    Article  CAS  Google Scholar 

  • Ding L, Munch J, Goerls H, Maier A, Fiebig HH, Line WH et al (2010) Xiamycin, a pentacyclic indolo sesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorg Med Chem Lett 20:6685–6687. doi:10.1016/j.bmcl.2010.09.010

    Article  CAS  Google Scholar 

  • Dong BX, Ye WW, Han Y, Deng ZX, Hong K (2014) Natural products from mangrove actinomycetes. Mar Drugs 12:2590–2613. doi:10.3390/md12052590

    Article  CAS  Google Scholar 

  • Dreyfuss MM, Chapela IH (1994) Potential of fungi in the diversity of novel, low molecular weight pharmaceuticals. In: Gullo VP (ed) The discovery of Natural Products with therapeutic Potential. Butterworth- Heinemann, Boston, pp 49–80

    Chapter  Google Scholar 

  • Dudeja SS, Giri R (2014) Beneficial properties, colonization, establishment and molecular diversity of endophytic bacteria in legumes and non leglumes. Afr J Micrbiol Res 8:1562–1572

    Article  Google Scholar 

  • Duenas M, Gonzalez IM, Cueva C, Giron AJ, Patán FS, Buelga CS et al (2015) A survey of modulation of gut microbiota by dietary polyphenols. Biomed Res Int. doi:10.1155/2015/850902 (Article ID 850902)

    Google Scholar 

  • Egamberdieva D, Wirth S, Behrendt U, Ahmad P, Berg G (2017) Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Front Microbiol 8:199. doi:10.3389/fmicb.2017.00199

    Google Scholar 

  • Elander RP (2003) Industrial production of betalactam antibiotics. Appl Microbiol Biotechnol 61:385–392. doi:10.1007/s00253-003-1274-y

    Article  CAS  Google Scholar 

  • Endo A (2010) A historical perspective on the discovery of statins. Proc Jpn Acad Ser B Phys Biol Sci 86:484–493. doi:10.2183/pjab.86.484

    Article  CAS  Google Scholar 

  • Espinasse S, Gohar M, Lereclus D, Sanchis V (2002) An ABC transporter from Bacillus thuringiensis is essential for beta-exotoxin I production. J Bacteriol 184:5848–5854. doi:10.1128/JB.184.21.5848-5854

    Article  CAS  Google Scholar 

  • Ezra D, Castillo UF, Strobel GA, Hess WM, Porter H, Jensen JM et al (2004) Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiol 150:785–793. doi:10.1099/mic.0.26645-0

    Article  CAS  Google Scholar 

  • Farooq M, Hussain M, Wahid A, Siddique KHM (2012) Drought stress in plants: an overview. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, pp 1–5. doi:10.1007/978-3-642-32653-0

    Google Scholar 

  • Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Cancer incidence and mortality worldwide: IARC cancer base No. 10 Lyon, France: International Agency for Research on Cancer. Globocan 2008 v2.0

  • Firakova S, Sturdikova M, Muckova M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62:251–257. doi:10.2478/s11756-007-0044-1

    Article  CAS  Google Scholar 

  • Fjaervik E, Zotchev SB (2005) Biosynthesis of the polyene macrolide antibiotic nystatin in Streptomyces noursei. Appl Microbiol Biotechnol 67:436–443. doi:10.1007/s00253-004-1802-4

    Article  CAS  Google Scholar 

  • Forchetti G, Masciarelli O, Izaguirre MJ, Alemano S, Alvarez D, Abdala G (2010) Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Curr Microbiol 61:485–493. doi:10.1007/s00284-010-9642-1

    Article  CAS  Google Scholar 

  • Francis IM, Jourdan S, Fanara S, Loria R, Rigali S (2015) The cellobiose sensor CebR is the gatekeeper of Streptomyces scabies pathogenicity. mBio 6:02018-14. doi:10.1128/mBio.02018-14

    Article  CAS  Google Scholar 

  • Gao Y, Lu Q, Pu Zang P, Li X, Ji Q, He Z et al (2015) An endophytic bacterium isolated from Panax ginseng CA Meyer enhances growth, reduces morbidity, and stimulates ginsenoside biosynthesis. Phytochem Lett 11:132–138. doi:10.1016/j.phytol.2014.12.007

    Article  CAS  Google Scholar 

  • Geddes CC, Nieves IU, Ingram LO (2011) Advances in ethanol production. Curr Opin Biotechnol 22:312–319. doi:10.1016/j.copbio.2011.04.012

    Article  CAS  Google Scholar 

  • Gendy MM, Bondkly AM (2010) Production and genetic improvement of a novel antimycotic agent, saadamycin, against dermatophytes and other clinical fungi from endophytic Streptomyces sp. Hedaya 48. J Ind Microbiol Biotechnol 37:831–841

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. doi:10.6064/2012/963401 (Article ID 963401)

    Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Prikl Biokhim Mikrobiol 44:153–158

    CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hardoim PR, Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. doi:10.1016/j.tim.2008.07.008

    Article  CAS  Google Scholar 

  • Hashem A, Abd-Allah EF, Alqarawi AA, Al-Huqail AA, Shah MA (2016) Induction of osmoregulation and modulation of salt stress in Acacia gerrardii Benth. by arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71). BioMed Res Int. doi:10.1155/2016/6294098 (Article ID 6294098)

    Google Scholar 

  • Hong-Thao PH, Mai-Linh NV, Hong-Lien NT, Hieu NV (2016) Biological characteristics and antimicrobial activity of endophytic Streptomyces sp. TQR12-4 isolated from elite Citrus nobilis cultivar Ham Yen of Vietnam. Int J Microbiol. doi:10.1155/2016/7207818 (Article ID 7207818)

    Article  Google Scholar 

  • Hopwood DA (2007) Streptomyces in nature and medicine. The antibiotic makers. Oxford University Press Inc, New York

    Google Scholar 

  • Ivanova EG, Fedorov DN, Doronina NV, Trotsenko YA (2006) Production of vitamin B12 in aerobic methylotrophic bacteria. Microbiology 75:494–496

    Article  CAS  Google Scholar 

  • Jakubas BP, Kulis MK, Giebel S, Cioch M, Czyż A, Maranda EL et al (2008) Use of L-asparaginase in acute lymphoblastic leukemia: recommendations of the Polish Adult Leukemia Group. Pol Arch Med Wewn 118:664–669

    Google Scholar 

  • Jalgaonwala RE (2013) Bioprospecting for microbial endophytes and their natural products (Ph.D Thesis). North Maharastra University, Jalgaon, Maharastra, India

  • Jalgaonwala RE, Mahajan RT (2014) Production of anticancer enzyme asparaginase from endophytic Eurotium sp. isolated from rhizomes of Curcuma longa. Eur J Exp Biol 4:36–43

    Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Sanavy SAM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. AJCS 5:726–734

    CAS  Google Scholar 

  • Jensen PR, Mincer TJ, Williams PG, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Antonie Leeuwenhoek 87:43–48

    Article  CAS  Google Scholar 

  • Jiao J, Ma Y, Chen S, Liu C, Song Y, Qin Y et al (2016) Melatonin producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts. Front Plant Sci 7:1387. doi:10.3389/fpls.2016.01387

    Article  Google Scholar 

  • Joshi RD, Kulkarni NS (2016) Optimization studies on l-asparaginase production from endophytic bacteria. Int J Appl Res 2:624–629

    Google Scholar 

  • Jung HJ, Yonghyo K, Hyang BL, Kwon HJ (2015) Antiangiogenic activity of the lipophilic antimicrobial peptides from an endophytic bacterial strain isolated from Red Pepper leaf. Mol Cells 38:273–278

    Article  CAS  Google Scholar 

  • Kai H, Yamashita M, Takase S, Hashimoto M, Muramatsu H, Nakamura I et al (2013) KB425796-A, a novel antifungal antibiotic produced by Paenibacillus sp. 530603. J Antibiot 66:465–471. doi:10.1038/ja.2013.63

    Article  CAS  Google Scholar 

  • Karthikeyan M, Bhaskaran R, Radhika K, Mathiyazhagan S, Jayakumar V, Sandosskumar R et al (2005) Endophytic Pseudomonas fluorescens Endo2 and Endo35 induce resistance in black gram (Vigna mungo L. Hepper) to the pathogen Macrophomina phaseolina. J Plant Interact 1:135–143. doi:10.1080/17429140600997309

    Article  CAS  Google Scholar 

  • Khanam B, Chandra R (2015) Isolation and identification of endophytic bacteria producing bright red pigment from the dye yielding plant Beta vulgaris L. Int J Pharm Pharm Sci 7:220–224

    CAS  Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351. doi:10.1016/S0958-1669(02)00328-2

    Article  CAS  Google Scholar 

  • Kitov PI, Mulvey GL, Griener TP, Lipinski T, Solomon D, Paszkiewicz E et al (2008) In vivo supra molecular templating enhances the activity of multivalent ligands: a potential therapeutic against the Escherichia coli O157 AB5 toxins. Proc Natl Acad Sci USA 105:16837–16842

    Article  CAS  Google Scholar 

  • Klessig DF, Tian M, Choi HW (2016) Multiple targets of salicylic acid and its derivatives in plants and animals. Front Immunol 7:206. doi:10.3389/fimmu.2016.00206

    Article  CAS  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, NY, pp 199–233

    Google Scholar 

  • Korkina LG (2007) Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol 53:15–25. doi:10.1170/T772

    CAS  Google Scholar 

  • Kumar A, Singh R, Giri DD, Singh PK, Pandey KD (2014) Effect of Azotobacter chroococcum CL13 inoculation on growth and curcumin content of turmeric (Curcuma longa L.). Int J Curr Microbiol Appl Sci 3:275–283

    CAS  Google Scholar 

  • Kumar V, Kumar A, Pandey KD, Roy BK (2015) Isolation and characterization of bacterial endophytes from the roots of Cassia tora L. Ann Microbiol 65:1391–1399. doi:10.1007/s13213-014-0977-x

    Article  CAS  Google Scholar 

  • Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD (2016) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 6:60. doi:10.1007/s13205-016-0393-y

    Article  Google Scholar 

  • Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294

    Article  CAS  Google Scholar 

  • Kyselova Z (2011) Toxicological aspects of the use of phenolic compounds in disease prevention. Interdiscip Toxicol 4:173–183. doi:10.2478/v10102-011-0027-5

    Article  CAS  Google Scholar 

  • Lai Thi Ngoc Ha (2016) Phenolic compounds and human health benefits. Vietnam J Agri Sci 14:1107–1118

    Google Scholar 

  • Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251. doi:10.1016/j.mib.2006.03.004

    Article  CAS  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (2008) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Lesburg CA, Zhai G, Cane DE, Christianson DW (1997) Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science 277:1820–1824. doi:10.1126/science.277.5333.1820

    Article  CAS  Google Scholar 

  • Li J, Zhao GZ, Chen HH, Wang HB, Qin S et al (2008) Anti-tumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest. Lett Appl Microbiol 47:574–580

    Article  CAS  Google Scholar 

  • Li J, Lu C, Shen Y (2010) Macrolides of the bafilomycin family produced by Streptomyces sp. C S J Antibiot 63:595–599. doi:10.1038/ja.2010.95

    Article  CAS  Google Scholar 

  • Li J, Zhao GZ, Varma A, Qin S, Xiong Z, Huang HY et al (2012) An endophytic Pseudonocardia species induces the production of artemisinin in Artemisia annua. PLoS One 7:e51410. doi:10.1371/journal.pone.0051410

    Article  CAS  Google Scholar 

  • Liarzi O, Bucki P, Braun Miyara S, Ezra D (2016) Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. PLoS One 11:e0168437. doi:10.1371/journal.pone.0168437

    Article  CAS  Google Scholar 

  • Limona RI, Penas E, Torino MI, Villaluengaa CM, Duenas M, Frias J (2015) Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chem 172:343–352

    Article  CAS  Google Scholar 

  • Liu Y, Liu W, Liang Z (2015) Endophytic bacteria from Pinellia ternata, a new source of purine alkaloids and bacterial manure. Pharm Biol 5:1545–1548. doi:10.3109/13880209.1016580

    Article  CAS  Google Scholar 

  • Liu G, Lai D, Liu ZQ, Zhou L, Liu LZ (2016) Identification of nematicidal constituents of Notopterygium incisum rhizomes against Bursaphelenchus xylophilus and Meloidogyne incognita. Molecules 21:1276. doi:10.3390/molecules21101276

    Article  CAS  Google Scholar 

  • Lopez MA, Bannenberg G, Castresana C (2008) Controlling hormone signaling is a plant and pathogen challenge for growth and survival. Curr Opin Plant Biol 11:420–427. doi:10.1016/j.pbi.2008.05.002

    Article  CAS  Google Scholar 

  • Lowicki D, Nski AH (2013) Structure and antimicrobial properties of Monensin A and its derivatives: summary of the achievements. Bio Med Res Int. doi:10.1155/2013/742149 (Article ID 742149)

    Google Scholar 

  • Lu L, Sun RW, Chen R, Hui HK, Ho CM, Luk JM, Lau GK, Che CM (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13:253–262

    CAS  Google Scholar 

  • Ma Y, Zhang C, Oliveira RS, Freitas H, Luo Y (2016) Bioaugmentation with endophytic bacterium E6S homologous to Achromobacter piechaudii enhances metal rhizoaccumulation in host Sedum plumbizincicola. Front Plant Sci 4:75. doi:10.3389/fpls.2016.00075

    Google Scholar 

  • Mahmoud AY, Abdallah HM, El-Halawani MA, Jiman-Fatani AAM (2015) Anti-tuberculous activity of Treponemycin produced by a Streptomyces strain MS-6-6 isolated from Saudi Arabia. Molecules 20:2576–2590. doi:10.3390/molecules20022576

    Article  CAS  Google Scholar 

  • Maier A, Maul C, Zerlin M, Grabley S, Thiericke R (1999) Biomolecular chemical screening: a novel screening approach for the discovery of biologically active secondary metabolites. II. Application studies with pure metabolite. J Antibiot (Tokyo) 52:952–959

    Article  CAS  Google Scholar 

  • Mark N, Greenwald RA, Hillen W, Nelson ML (2001) Tetracyclin in biology, chemistry and medicine. Birkhauser, Basel, p 8

    Google Scholar 

  • Mercado BJ, Bakker PA (2007) Interaction between plants and beneficial Pseudomonas sp., exploiting bacterial traits for crop protection. Antonie Leeuwenhok 92:367–389. doi:10.1007/s10482-007-9167-1

    Article  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120. doi:10.1007/10_2007_066

    CAS  Google Scholar 

  • Miao V (2005) Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151:1507–1523. doi:10.1099/mic.0.27757-0

    Article  CAS  Google Scholar 

  • Miller RV, Miller CM, Kinney DG, Redgrave B, Sears J, Condron M et al (1998) Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol 84:937–944. doi:10.1046/j.1365-2672.1998.00415.x

    Article  CAS  Google Scholar 

  • Mitsuhashi S (2014) Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides. Curr Opin Biotechnol 26:38–44. doi:10.1016/j.copbio.2013.08.020

    Article  CAS  Google Scholar 

  • Molina G, Pimentel MR, Bertucci TCP, Pastore GM (2012) Application of fungal endophytes in biotechnological processes. Chem Eng Trans 27:289–294

    Google Scholar 

  • Nicolaou KC, Chen JS, Corey EJ (2011) Classics in total synthesis, further targets, strategies, methods III. Wiley, Weinheim, pp 1–770

    Google Scholar 

  • Nongkhlaw FMW, Joshi SR (2015) Investigation on the bioactivity of culturable endophytic and epiphytic bacteria associated with ethnomedicinal plants. J Infect Dev Ctries 9:954–961. doi:10.3855/jidc.4967

    Article  Google Scholar 

  • Pandey SS, Singh S, Babu CSV, Shanker K, Shrivastava NK, Kalra A (2016) Endophytes of opium poppy differentially modulate host plant productivity and genes for the biosynthetic pathway of benzylisoquinoline alkaloids. Planta 243:1097–1114. doi:10.1007/s00425-016-2467-9

    Article  CAS  Google Scholar 

  • Perucka I, Materska M (2003) Antioxidant activity and content of capsaicinoids isolated from paprika fruits. Polish J Food Nutr Sci 12:15–18

    CAS  Google Scholar 

  • Pesic A, Steinhaus B, Kemper S, Nachtigall J, Kutzner HJ, Höfle G, Sussmuth RD (2014) Isolation and structure elucidation of the nucleoside antibiotic strepturidin from Streptomyces albus DSM 40763. J Antibiot 67:471–477. doi:10.1038/ja.2014.16

    Article  CAS  Google Scholar 

  • Pimentel-Elardo SM, Kozytska S, Bugni TS, Ireland CM, Moll H, Hentschel U (2010) Anti-parastic compounds from Streptomyces sp. strains isolated from Mediterranean Sponges. Mar Drugs 23:373–380. doi:10.3390/md8020373

    Article  CAS  Google Scholar 

  • Pinchuka IV, Bressollier P, Sorokulova IB, Verneuil B, Urdaci MC (2002) Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res Microbiol 153:269–276. doi:10.1016/S0923-2508(02)01320-7

    Article  Google Scholar 

  • Pissuwan D, Valenzuela SM, Cortie MB (2006) Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 24:62–67. doi:10.1016/j.tibtech.2005.12.004

    Article  CAS  Google Scholar 

  • Prashith-Kekuda TR (2016) Isolation, characterization and antimicrobial potential of endophytic actinomycetes. Int J Curr Microbiol Appl Sci 5:100–116. doi:10.20546/ijcmas.2016.507.008

    Article  Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    Article  CAS  Google Scholar 

  • Qin S, Xing K, Hong JJ, Xu LL, Li WJ (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473. doi:10.1007/s00253-010-2923-6

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424. doi:10.1146/annurev-phyto-081211-172908

    Article  CAS  Google Scholar 

  • Raju R, Gromyko O, Fedorenko V, Luzketsky A, Muller R, Albaflavenol B (2015) Albaflavenol B, a new sesquiterpene isolated from the terrestrial actinomycete, Streptomyces sp. J Antibiot 68:286–288. doi:10.1038/ja.2014.138

    Article  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  Google Scholar 

  • Rosenblueth M, Romero EM (2006) Bacterial endophytes and their interactions with hosts. APS 19:827–837

    CAS  Google Scholar 

  • Roy S, Banerjee D (2015) Bioactive endophytic actinomycetes of Cinnamomum sp. isolation, identification, activity guided purification and process optimization of active metabolite. Am J Microbiol 6:4–13. doi:10.3844/ajmsp.2015.4.13

    Google Scholar 

  • Salam N, Khieu T, Liu M, Vu T, Chu-Ky S, Quach N, Phi Q, Rao MPN, Fontana A et al (2017) Endophytic actinobacteria associated with Dracaena cochinchinensis Lour.: Isolation, diversity, and their cytotoxic activities. BioMed Res Int. doi:10.1155/2017/1308563 (Article ID 1308563)

  • Sanatombi K, Sharma GJ (2008) Capsaicin content and pungency of different capsicum sp. cultivars. Not Bot Hortic Agrobot Cluj 36:89–90

    Google Scholar 

  • Sansinenea E, Ortiz A (2011) Secondary metabolites of soil Bacillus spp. Biotechnol Lett 33:1523–1538. doi:10.1007/s10529-011-0617-5

    Article  CAS  Google Scholar 

  • Sathiyaseelan K, Stella D (2011) Isolation, identification and antimicrobial activity of marine actinomycetes isolated from Parangipettai. Recent Res Sci Technol 3:74–77

    Google Scholar 

  • Sato F, Kumagai H (2013) Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research. Proc Jpn Acad Ser B 89:165–181

    Article  CAS  Google Scholar 

  • Shaligram NS, Singhal RS (2010) Surfactin—a review on biosynthesis, fermentation, purification and applications. Food Technol Biotechnol 48:119–134

    CAS  Google Scholar 

  • Sharma D, Pramanik A, Agrawal PK (2016) Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D.Don. 3 Biotech 6:210. doi:10.1007/s13205-016-0518-3

    Article  Google Scholar 

  • Silva GH, Teles LH, Zanardi LM, Young MC, Eberlin MN, Hadad R et al (2007) Cadinane sesquiterpenoids of Phomopsis cassiae an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry 67:1964–1969. doi:10.1016/j.phytochem.2006.06.004

    Article  CAS  Google Scholar 

  • Singh S, Bindu H, Raghu J, Suma HK, Manjunatha BL, Kumara PM et al (2013) Isolation of endophytic bacteria producing the anti-cancer alkaloid camptothecine from Miqueliadentata Bedd. (Icacinaceae). Phytomedicine 20:913–917. doi:10.1016/j.phymed.2013.04.004

    Article  CAS  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857. doi:10.1111/j.1365-2958.2005.04587.x

    Article  CAS  Google Scholar 

  • Strobel G (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9:240–244. doi:10.1016/j.mib.2006.04.001

    Article  CAS  Google Scholar 

  • Strobel G, Ford WJ, Harper JK, Arif AM, Grant DM, Peter F, Chau RM (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora possessing antifungal and antioxidant activities. Phytochemistry 60:179–183

    Article  CAS  Google Scholar 

  • Subbulakshmi GK, Thalavaipandian A, Bagyalakshmi RV, Rajendran A (2012) Bioactive endophytic fungal isolates of Biota orientalis (L) Endl., Pinus excelsaWall. and Thuja occidentalis L. Int J Adv Life Sci 4:9–15

    Google Scholar 

  • Sun RW, Chen R, Chung NP, Ho CM, Lin CL, Che CM (2005) Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Commun (Camb) 40:5059–5061

    Article  CAS  Google Scholar 

  • Sunkar S, Nachiyar CV (2012) Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed 2:953–959. doi:10.1016/S2221-1691(13)60006-4

    Article  CAS  Google Scholar 

  • Suryanarayanan TS, Murali TS (2006) Incidence of Leptosphaerulina crassiasca in symptomless leaves of peanut in southern India. J Basic Microbiol 46:1003–1006

    Article  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitch A, Wilhelem E (2007) Bacterial endophyte contribute to abiotic stress adaptation in pepper plants (Capsicum annum L.). Can J Microbiol 53:1195–1202. doi:10.1139/W07-082

    Article  CAS  Google Scholar 

  • Taechowisan T, Chanaphat S, Ruensamran W, Phutdhawong WS (2012) Anti-inflammatory effect of 3-methylcarbazoles on RAW 2647 cells stimulated with LPS, polyinosinic-polycytidylic acid and Pam3CSK. Adv Microbiol 2:98–103

    Article  CAS  Google Scholar 

  • Takahashi S, Takeuchi M, Arai M, Seto H, Otake N (1983) Studies on biosynthesis of pentalenolactone. V isolation of deoxypentalenylglucuron. J Antibiot (Tokyo) 36:226–228. doi:10.7164/antibiotics.36.226

    Article  CAS  Google Scholar 

  • Tamehiro N, Okamot-Hosova Y, Okamoto S, Ubukata M, Hamada M, Naganawa H et al (2002) Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrob Agents Chemother 46:315–320. doi:10.1128/AAC.46.2.315-320.2002

    Article  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459. doi:10.1039/B100918O

    Article  CAS  Google Scholar 

  • Taylor PL, Omotoso O, Wiskel JB, Mitlin D, Burrell RE (2005) Impact of heat on nanocrystalline silver dressings. Part II: physical properties. Biomaterials 26:7230–7240

    Article  CAS  Google Scholar 

  • Thenmozhi M, Krishnan K (2011) Anti-Aspergillus activity of Streptmyces sp. VITSTK7 isolated from bay of Bengal coast of Puducherry, India. J Nat Environ Sci 2:1–8

    Google Scholar 

  • Tiwari R, Awasthi A, Mall M, Shukla AK, Srinivas KS, Syamasundar KV, Kalra A (2013) Bacterial endophyte mediated enhancement of in planta content of key terpenoid indole alkaloids and growth parameters of Catharanthus roseus. Ind Crops Prod 43:306–310. doi:10.1016/j.indcrop.2012.07.045

    Article  CAS  Google Scholar 

  • Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177:123–131. doi:10.1007/s00203-001-0368-0

    Article  CAS  Google Scholar 

  • Valdes L, Cuervo A, Salazar N, Ruas-Madiedo P, Gueimonde M, Gonzalez S (2015) The relationship between phenolic compounds from diet and microbiota: impact on human health. Food Funct 6:2424–2439. doi:10.1039/c5fo00322a

    Article  CAS  Google Scholar 

  • Verginer M, Siegmund B, Cardinale M, Muller H, Choi Y, Maıguez CB et al (2010) Monitoring the plant epiphyte Methylobacterium extorquens DSM 21961 by real-time PCR and its influence on the strawberry flavor. FEMS Microbiol Ecol 74:136–145. doi:10.1111/j.1574-6941.2010.00942.x

    Article  CAS  Google Scholar 

  • Verpoorte R (1998) Exploration of nature’s chemo diversity: the role of secondary metabolites as leads in drug development. Drug Discov Today 3:232–238

    Article  CAS  Google Scholar 

  • Villaescusa BP, Rangel-Huerta OD, Aguilera CM, Gil A (2015) A systematic review of the efficacy of bioactive compounds in cardiovascular disease: carbohydrates, active lipids and nitrogen compounds. Ann Nutr Metab 66:168–181. doi:10.1159/000430960

    Article  CAS  Google Scholar 

  • Vinale F, Nicoletti R, Lacatena F, Marra R, Sacco A, Lombardi N, D’Errico G, Digilio MC, Lorito M, Woo SL (2017) Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Nat Prod Res 31:1778–1785

    Article  CAS  Google Scholar 

  • Waldron C, Matsushima P, Rosteck PR, Broughton MC, Turner J, Madduri K (2001) Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa. Chem Biol 8:487–499. doi:10.1016/S1074-5521(01)00029-1

    Article  CAS  Google Scholar 

  • Wei L, Xueqiong Y, Yabin Y, Lixing Z, Lihua X, Zhongtao D (2015) A new anthracycline from endophytic Streptomyces sp. YIM66403. J Antibiot 68:216–219. doi:10.1038/ja.2014.128

    Article  CAS  Google Scholar 

  • Wendisch VF (2014) Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 30:51–58. doi:10.1016/j.copbio.2014.05.004

    Article  CAS  Google Scholar 

  • Yamada Y, Kuzuyama T, Komatsu M, Shinya K, Omura S, Cane DE et al (2015) Terpene synthases are widely distributed in bacteria. Proc Natl Acad Sci USA 112:857–862. doi:10.1073/pnas.1422108112

    Article  CAS  Google Scholar 

  • Yamazaki Y, Someno T, Igarashi M, Kinoshita N, Hatano M, Kawada M et al (2015) Androprostamines A and B, the new anti-prostate cancer agents produced by Streptomyces sp. MK932-CF8. J Antibiot 68:279–285. doi:10.1038/ja.2014.135

    Article  CAS  Google Scholar 

  • Yoon YJ, Kim ES, Hwang YS, Choi CY (2004) Avermectin: biochemical and molecular basis of its biosynthesis and regulation. Appl Microbiol Biotechnol 63:626–634. doi:10.1007/s00253-003-1491-4

    Article  CAS  Google Scholar 

  • Yu H, Zhang L, Li L, Zheng C, Guo L, Li W et al (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–449. doi:10.1016/j.micres.2009.11.009

    Article  CAS  Google Scholar 

  • Yuan N, Song L, Zhang S, Lin W, Cao Y, Xu F, Fang Y, Wang Z, Zhang H, Li X (2015) Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica 100:345–356

    Article  CAS  Google Scholar 

  • Zhao K, Penttinen P, Guan T, Xiao J, Chen Q, Xu J et al (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi Plateau, China. Curr Microbiol 62:182–190. doi:10.1007/s00284-010-9685-3

    Article  CAS  Google Scholar 

  • Zhejian W, Zhao M, Lili W, Chengchen T, Zhibi H, GuiXin C, Wankui L (2015) Active anti-acetylcholinesterase component of secondary metabolites produced by the endophytic fungi of Huperzia serrata. Electron J Biotechnol 18:399–405

    Article  CAS  Google Scholar 

  • Zhou JY, Yuan J, Li X, Ning YF, Dai CC (2015) Endophytic bacterium triggered reactive oxygen species directly increase oxygenous sesquiterpenoid content and diversity in Atractylodes lancea. Appl Environ Microbiol 82:1577–1585

    Article  CAS  Google Scholar 

  • Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208. doi:10.1128/AEM.68.5.2198-2208.2002

    Article  CAS  Google Scholar 

  • Zothanpuia Passari AK, Chandra P, Leo VV, Mishra VK, Kumar B, Singh BP (2017) Production of potent antimicrobial compounds from Streptomyces cyaneofuscatus associated with fresh water sediment. Front Microbiol 8:68. doi:10.3389/fmicb.2017.00068

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DST-Inspire (to Monika Singh), University Grant Commission (CAS in Botany), DST-FIST, New Delhi, India. Authors thank Prof. Madhoolika Agrawal, Head, Department of Botany, Banaras Hindu University, for providing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Deo Pandey.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Kumar, A., Singh, R. et al. Endophytic bacteria: a new source of bioactive compounds. 3 Biotech 7, 315 (2017). https://doi.org/10.1007/s13205-017-0942-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0942-z

Keywords

Navigation