Skip to main content
Log in

Bioprospecting lovastatin production from a novel producer Cunninghamella blakesleeana

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Beside anti-cholesterol activity, lovastatin garners worldwide attention for therapeutical application against various diseases especially cancer. A total of 36 filamentous fungi from soil samples were isolated and screened for lovastatin production by yeast growth bioassay method. C9 strain (later identified as Cunninghamella blakesleeana) was screened as potential strain of lovastatin production. Further confirmation of the compound was made using TLC, HPTLC and HPLC in which similar Rf value, densitogram peak and chromatogram peak against the standard lovastatin were observed, respectively. The purified lovastatin subjected for IR analysis showed a lactone ring peak at 1763.63 cm−1 similar to standard lovastatin. Further structural analysis including NMR and LC–MS of the purified lovastatin reassures the molecular formula and molecular weight similar to standard. In quantitative terms, C. blakesleeana, Aspergillus terreus and Aspergillus flavus produced 1.4 mg g−1 DWS, 0.83 mg g−1 DWS and 0.3 mg g−1 DWS of lovastatin, respectively, (p < 0.0001) without any optimization. Lovastatin showed significant antioxidant property with IC50: 145.9 µg mL−1 (140 µL), and the percentage of inhibition is maximum at 199.5 µg/mL which is statistically significant (p < 0.0001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alexopoulos CJ, Mims CN, Blackwell M (1996) Introductory mycology, 4th edn. Willey, New York, p 868

    Google Scholar 

  • Arranz S, Calixto FS (2010) Analysis of polyphenols in cereals may be improved performing acidic hydrolysis: a study in wheat flour and wheat bran and cereals of the diet. J Cereal Sci 51:313–318

    Article  CAS  Google Scholar 

  • Babu RH, Rupa A, Radha S, Prasad NB, Narasimha G (2011) Screening of lovastatin producing fungi by yeast growth inhibition assay method. J Pharm Res 4:2967–2968

    CAS  Google Scholar 

  • Barrios-González J, Miranda RU (2010) Biotechnological production and applications of statins. Appl Microbiol Biotechnol 85:869–883

    Article  CAS  PubMed  Google Scholar 

  • Beer DD, Schulze AE, Joubert E, Villiers AD, Malherbe CJ, Stander MA (2012) Food ingredient extracts of Cyclopia subternata (Honeybush): variation in phenolic composition and antioxidant capacity. Compounds 17:14602–14624

    Google Scholar 

  • Berger S, Baun S (2004) 200 and more NMR experiments: a practical course, 3rd edn. University of Leipzig Press, Leipzig, pp 1–854

    Google Scholar 

  • Bhargavi S, Praveen V, Marium S, Sreepriya M, Savitha J (2016) Purification of lovastatin from Aspergillus terreus (KM017963) and evaluation of its anticancer and antioxidant properties. Asian Pac J Cancer Prev 17:3797–3803

    PubMed  Google Scholar 

  • Bizukojc M, Ledakowicz S (2007) A macrokinetic modelling of the biosynthesis of lovastatin by Aspergillus terreus. J Biotechnol 130:422–435

    Article  CAS  PubMed  Google Scholar 

  • Chanakya P, Latha PM, Srikanth M (2011) Solid state fermentation for the production of lovastatin production by Aspergillus fischeri. Res J Pharm Sci Biotech 1:9–13

    Google Scholar 

  • Davidson MH, Robinson JG (2006) Lipid-lowering effects of statins: a comparative review. Expert Opin Pharmacother 7:1701–1714

    Article  CAS  PubMed  Google Scholar 

  • Dikshit R, Tallapragada P (2015) Bio-synthesis and screening of nutrients for lovastatin by Monascus sp. under solid-state fermentation. J Food Sci Technol 52:6679–6686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dube AK, Kumar MS (2017) Biotransformation of bromhexine by C. elegans, C. echinulata. and C. blakesleeana. Braz J Microbiol 48:259–267

    Article  PubMed  Google Scholar 

  • Endo A (2004) The origin of the statins. Int Congress Ser 1262:3–8

    Article  CAS  Google Scholar 

  • Endo A, Monacloin K (1979) A new hypocholesterolemic agent produced by a Monascus species. J Antibiot 32:853–854

    Article  Google Scholar 

  • Endo A, Kuroda M, Tanzawa K (1976) Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-562236A and ML-236B fungal metabolites having hypocholesterolemic activity. FEBS Lett 72:323–326

    Article  CAS  PubMed  Google Scholar 

  • Friedrich J, Žužek M, Benčina M, Cimerman A, Štrancar A, Radež I (1995) High-performance liquid chromatographic analysis of mevinolin as mevinolinic acid in fermentation broths. ‎J Chromatogr A 704:363–367

    Article  CAS  Google Scholar 

  • Gupta K, Mishra PK, Srivastava P (2007) A correlative evaluation of morphology and rheology of Aspergillus terreus during lovastatin fermentation. Biotechnol Bioprocess Eng 12:140–146

    Article  CAS  Google Scholar 

  • Istvan E (2003) Statin inhibition of HMG-CoA reductase: A 3-dimensional view. Atheroscler 4:3–8

    Article  CAS  Google Scholar 

  • Iwashima M, Mori J, Ting X, Matsunaga T, Hayashi K, Shinoda D, Saito H, Sankawa U, Hayashi T (2005) Antioxidant and antiviral activities of plastoquinones from the brown alga Sargassum micracanthum, and a new chromene derivative converted from the plastoquinones. Biol Pharm Bull 28:374–377

    Article  CAS  PubMed  Google Scholar 

  • Jahromi MF, Liang JB, Ho YW, Mohamed R, Goh YM, Shokryazdan P (2012) Lovastatin production by Aspergillus terreus using agro-biomass as substrate in solid state fermentation. J Biomed Biotech. https://doi.org/10.1155/2012/196264

    Article  Google Scholar 

  • Jaivel N, Marimuthu P (2010) Optimization of lovastatin production in solid state fermentation by Aspergillus terreus. Intl J Eng Sci Technol 2:2730–2733

    Google Scholar 

  • Kamath PV, Janakiraman S (2012) Solid state fermentation: an effective method for lovastatin production by fungi. A mini review. Open Trop Med J 5:1–5

    Article  CAS  Google Scholar 

  • Kamath PV, Dwarakanath BS, Chaudhary A, Janakiraman S (2015a) Optimization of culture conditions for maximal lovastatin production by Aspergillus terreus (KM017963) under solid state fermentation. HAYATI J Biosci 22:174–180

    Article  Google Scholar 

  • Kamath PV, Dwarakanath BS, Janakiraman S (2015b) Lovastatin production by Aspergillus terreus (KM017963) in submerged and solid state fermentation: a comparative study (2015). Am J Pharm Health Res 3:117–126

    Google Scholar 

  • Kirby TJ (1967) Cataracts produced by triparanol. (MER-29). Trans Am Ophthalmol Soc 65:494–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo R, Kurashiki K, Sakai K (1994) In vitro bleaching of hardwood kraft pulp by extracellular enzymes excreted from white rot fungi in a cultivation system using a membrane filter. Appl Environ Microbiol 60:921–926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar MS, Kumar PM, Sarnaik HM, Sadhukhan AK (2000) A rapid technique for screening of lovastatin-producing strains of Aspergillus terreus by agar plugs and Neurospora crassa bioassay. J Microbiol Methods 40:99–104

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Srivastava N, Gomes J (2011) The effect of lovastatin on oxidative stress and antioxidant enzymes in hydrogen peroxide intoxicated rat. Food Chem Toxicol 49:898–902

    Article  CAS  PubMed  Google Scholar 

  • Lai LS, Hung CS, Lo CC (2007) Effects of lactose and glucose on production of itaconic acid and lovastatin by Aspergillus terreus ATCC 20542. J Biosci Bioeng 104:9–13

    Article  CAS  PubMed  Google Scholar 

  • Lingappa K, Babu CV, Siddalingeshwar KG, Pramod T (2004) Isolation, screening and rapid confirmation of lovastatin producing strains of Aspergillus terreus. Indian J Microbiol 44:133–136

    CAS  Google Scholar 

  • Ludman A, Venugopal V, Yellon DM, Hausenloy DJ (2009) Statins and cardio protection—more than just lipid lowering? Pharmacol Ther 122:30–43

    Article  CAS  PubMed  Google Scholar 

  • Manzoni M, Rollini M (2002) Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol 58:555–564

    Article  CAS  PubMed  Google Scholar 

  • Mohan Kumari HP, Dhale MA, Naidu AK, Vijayalakshmi G (2011) Antioxidant effect of red mould rice in hypercholesterolemic Wistar male rats. Cell Biochem Funct 29:597–602

    Article  CAS  PubMed  Google Scholar 

  • Mouafi FE, Ibrahim GS, Elsoud MA (2016) Optimization of lovastatin production from Aspergillus fumigatus. J Genetic Eng Biotechnol 14:253–259

    Article  Google Scholar 

  • Mulder KC, Mulinari F, Franco OL, Soares MS, Magalhães BS, Parachin NS (2015) Lovastatin production: from molecular basis to industrial process optimization. ‎Biotechnol Adv 33:648–665

    Article  CAS  PubMed  Google Scholar 

  • Nazzal S, Smalyukh II, Lavrentovich OD, Khan MA (2002) Preparation and in vitro characterization of a eutectic based semisolid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: mechanism and progress of emulsion formation. Int J Pharm 235:247–265

    Article  CAS  PubMed  Google Scholar 

  • Nidhiya KA, Satya E, Nitya MR, Saranya A, Suganthi R (2015) In vitro anticancer potential of statin from Aspergillus Tamarii Grd119. Asian J Pharm Clin Res 8:147–153

    CAS  Google Scholar 

  • Oyaizu M (1986) Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet 44:307–315

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P (2001) Solid-state fermentation in biotechnology: fundamentals and applications. Asiatech, New Delhi, pp 132–133

    Google Scholar 

  • Patel RP, Patel MM (2007) Preparation and evaluation of inclusion complex of the lipid lowering drug lovastatin with β-Cyclodextrin. Dhaka Univ J Pharm Sci 6:25–36

    Article  Google Scholar 

  • Pecyna M, Bizukojc M (2011) Lovastatin biosynthesis by Aspergillus terreus with the simultaneous use of lactose and glycerol in a discontinuous fed-batch culture. Biotechnology 151:77–86

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. MolBiolEvol 4:406–425

    CAS  Google Scholar 

  • Samiee SM, Moazami N, Haghighi S, Aziz Mohseni F, Mirdamadi S, Bakhtiari MR (2003) Screening of lovastatin production by filamentous fungi. Iran Biomed J 7:29–33

    CAS  Google Scholar 

  • Sayyad SA, Panda BP, Javed S, Ali M (2006) Optimization of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using response surface methodology. Appl Microbiol Biotechnol 73:1054–1058

    Article  CAS  PubMed  Google Scholar 

  • Seraman S, Rajendran A, Thangavelu V (2010) Statistical optimization of anticholesterolemic drug lovastatin production by the red mold Monascus purpureus. Food Bioprod Process 88:266–276

    Article  CAS  Google Scholar 

  • Shindia AA (1997) Mevinolin production by some fungi. Folia Microbiol 42:477–480

    Article  CAS  Google Scholar 

  • Singh RB, Singh NK, Rastogi SS, Wander GS, Aslam M, Onouchi Z (1997) Antioxidant effects of lovastatin and vitamin E on experimental atherosclerosis in rabbits. Cardiovasc Drugs Ther 11:575–590

    Article  CAS  PubMed  Google Scholar 

  • Skoog DA, Holler FJ, Nieman TA (1988) Separation methods. In: Principles of instrumental analysis, 5th edn. Saunders College Publishing, Philadelphia, pp 674–700

    Google Scholar 

  • Sramkova Z, Gregova E, Sturdík E (2009) Chemical composition and nutritional quality of wheat grain. Acta Chimica Slovaca 2:115–138

    Google Scholar 

  • Subazini TK, Kumar GR (2011) Characterization of Lovastatin biosynthetic cluster proteins in Aspergillus terreus strain ATCC 20542. Bioinformation 6:250–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun X, Liu Z, Qu Y, Li X (2008) The effects of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens. Appl Biochem Biotechnol 146:119–128

    Article  CAS  PubMed  Google Scholar 

  • Suraiya S, Kim JH, Tak JY, Siddique MP, Young CJ, Kim JK, Kong IS (2018) Influences of fermentation parameters on lovastatin production by Monascus purpureus using Saccharina japonica as solid fermented substrate. LWT 92:1–9

    Article  CAS  Google Scholar 

  • Suryanarayan S (2003) Current industrial practice in solid state fermentations for secondary metabolite production: the Biocon India experience. Biochem Eng J 13:189–195

    Article  CAS  Google Scholar 

  • Tandon V, Bano G, Khajuria V, Parihar A, Gupta S (2005) Pleiotropic effects of statins. Ind J Pharmacol 37:77–85

    Article  CAS  Google Scholar 

  • Tobert JA (2003) Lovastatin and beyond: the history of the HMGCoA reductase inhibitors. Nat Rev Drug Discov 2:517–526

    Article  CAS  PubMed  Google Scholar 

  • Valera HR, Gomes J, Lakshmi S, Gururaja R, Suryanarayan S, Kumar D (2005) Lovastatin production by solid state fermentation using Aspergillus flavipes. Enzyme Microb Technol 37:521–526

    Article  CAS  Google Scholar 

  • Vlčková H, Solichová D, Bláha M, Solich P, Nováková L (2011) Microextraction by packed sorbent as sample preparation step for atorvastatin and its metabolites in biological samples—critical evaluation. J Pharm Biomed Anal 55:301–308

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Lee CL, Pan TM (2003) Improvement of monacolin K, -aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J Ind Microbiol Biotechnol 30:669–676

    Article  CAS  PubMed  Google Scholar 

  • Wei P, Xu Z, Cen P (2007) Lovastatin production by Aspergillus terreus in solid-state fermentation. J Zhejiang Univ Sci A 8:1521–1526

    Article  CAS  Google Scholar 

  • Wu Y, Zhao J, Henion J, Korfmacher WA, Lapiguera AP, Lin CC (1997) Microsample determination of lovastatin and its hydroxy acid metabolite in mouse and rat plasma by liquid chromatography/ion spray tandem mass spectrometry. J Mass Spectrom 32:379–387

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi F, Ariga T, Yoshimira Y, Nakazawa H (2000) Antioxidant and anti-glycation of carcinol from Garcinia indica fruit rind. J Agric Food Chem 48:180–185

    Article  CAS  PubMed  Google Scholar 

  • Zamvil SS, Steinman L (2002) Cholesterol-lowering statins possess anti-inflammatory activity that might be useful for treatment of MS. Neurology 59:970–971

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angayarkanni Jayaraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balraj, J., Jairaman, K., Kalieswaran, V. et al. Bioprospecting lovastatin production from a novel producer Cunninghamella blakesleeana. 3 Biotech 8, 359 (2018). https://doi.org/10.1007/s13205-018-1384-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1384-y

Keywords

Navigation