Skip to main content
Log in

Enhancement of glycerol production by UV-mutagenesis of the marine yeast Wickerhamomyces anomalus HH16: kinetics and optimization of the fermentation process

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The current study aims to enhance glycerol production using UV-mutagenesis of the marine yeast Wickerhamomyces anomalus HH16 isolated from marine sediment collected from South Sinai Governorate, Egypt. Besides optimization of the culture conditions and analyzing the kinetic parameters of growth and glycerol biosynthesis by the mutant strain were studied. The marine yeast isolate HH16 was selected as the front runner glycerol-producer among all tested isolates, with glycerol yield recorded as 66.55 gl−1. The isolate was identified based on the phenotypic and genotypic characteristics of W. anomalus. The genotypic characterization based on the internal transcribed spacer (ITS) sequence was deposited in the GenBank database with the accession number MK182824. UV-mutagenesis of W. anomalus HH16 by its exposure to UV radiation (254 nm, 200 mW cm−2) for 5 min; increased its capability in the glycerol production rate with 16.97% (80.15 g l−1). Based on the kinetic and Monod equations, the maximum specific growth rate (μmax) and maximum specific glycerol production rate (vmax) by the mutant strain W. anomalus HH16MU5 were 0.21 h−1 and 0.103 g g−1, respectively. Optimization of the fermentation parameters such as nitrogen source, salinity and pH has been achieved. The maximum glycerol production 86.55 g l−1 has been attained in a fermentation medium composed of 200 g l−1 glucose, 1 g l−1 peptone, 3 g l−1 yeast extract, and 58.44 g l−1 NaCl, this medium was adjusted at pH 8 and incubated for 3 days at 30° C. Moreover, results indicated the ability of this yeast to produce glycerol (73.33 g l−1) using a seawater based medium. These findings suggest the applicability of using the yeast isolate W. anomalus HH16MU5 as a potential producer of glycerol for industrial purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel Nasser A, El-Moghaz (2010) Comparative study of salt tolerance in Saccharomyces cerevisiae and Pichia pastoris yeast strains. Adv Bioresour 1:169–176

    Google Scholar 

  • Agarwal GP (1990) Glycerol. Adv Biochem Eng Biotechnol 41:95–128

    CAS  Google Scholar 

  • Ali N, Khan MN (2014) Screening, identification and characterization of alcohol tolerant potential bioethanol producing yeasts. Curr Res Microbiol Biotechnol 2(1):316–324

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  PubMed  Google Scholar 

  • Aslankoohi E, Rezaei MN, Vervoort Y, Courtin CM, Verstrepen KJ (2015) Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation. PLoS One 10(3):e0119364

    PubMed  PubMed Central  Google Scholar 

  • Babazadeh R, Lahtvee PJ, Adiels CB, Goksör M, Nielsen JB, Hohmann S (2017) The yeast osmostress response iscarbon source dependent. Sci Rep 7(1):990

    PubMed  PubMed Central  Google Scholar 

  • Bamforth CW (2005) The science underpinning food fermentations. Fermentation and micro-organisms, vol 1. Blackwell Science Ltd Publishing, Oxford, pp 78–84

    Google Scholar 

  • Bhasin S, Modi HA (2012) Optimization of fermentation medium for the production of glucose isomerase using Streptomyces sp. SB-P1. Biotechnol Res Int Article ID 874152:1–10

    Google Scholar 

  • Bubnová M, Zemančíková J, Sychrová H (2014) Osmotolerant yeast species differ in basic physiological parameters and in tolerance of non-osmotic stresses. Yeast 31:309–321

    PubMed  Google Scholar 

  • Butinar L, Santos S, Spencer-Marrtins I, Gunde-Cimerman N (2005) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234

    CAS  PubMed  Google Scholar 

  • Chen G, Yao S (2013) The effect of created local hyperosmotic microenvironment in microcapsule for the growth and metabolism of Osmotolerant Yeast Candida krusei. BioMed Res Inter 2013(4):467263

    Google Scholar 

  • Connell L, Redman R, Craig S, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microbiol Ecol 56:448–459

    CAS  Google Scholar 

  • Costa E, Teixidό N, Usall J, Atarés E, Viñas I (2002) The effect of nitrogen and carbon sources on growth of the biocontrol agent Pantoeaagglomerans strain CPA-2. Lett Appl Microbiol 35:117–120

    CAS  PubMed  Google Scholar 

  • Ehsani M, Fernández MR, Biosca JA, Julien A, Dequin S (2009) Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae. Appl Environ Microbiol 75:3196–3205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X, Burton R, Zhou Y (2010) Glycerol (byproduct of biodiesel production) as a source for fuels and chemicals—mini review. Open Fuel Energy Sci 3:17–22

    CAS  Google Scholar 

  • Fernanda L, Magda S, Candida L (1999) Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. Microbiol 45:2577–2585

    Google Scholar 

  • Freeman GG, Donald GMS (1957) Fermentation processes leading to glycerol: II. Studies on the effect of sulfites on viability, growth and fermentation of Saccharomyces cerevisiae. Appl Microbiol 5:211–215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghindea R, Vassu T, Stoica I, Tanase AM, Csutak O (2009) Preliminary taxonomic studies on yeast strains isolated from dairy products. Rom Biotechnol Lett 14(1):4170–4179

    CAS  Google Scholar 

  • Grembecka M (2015) Sugar alcohols-their role in the modern world of sweeteners: a review. Eur Food Res Technol 241:1–14

    CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikehata H, Tetsuya O (2011) The mechanisms of UV mutagenesis. J Radiat Res 52:115–125

    CAS  PubMed  Google Scholar 

  • Junior M, Batistote M, Ernandes J (2008) Glucose and fructose fermentation by wine yeasts in media containing structurally complex nitrogen sources. J Inst Brew 114:199–204

    Google Scholar 

  • Kalle GP, Naik SC, Lashkari BZ (1985) Improved glycerol production from cane molasses by the sulfite process with vacuum or continuous carbon dioxide sparging during fermentation. J Ferment Technol 63:231–237

    CAS  Google Scholar 

  • Klein M, Swinnen S, Thevelein JM, Nevoigt E (2017) Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities. Environ Microbiol 19(3):878–893

    CAS  PubMed  Google Scholar 

  • Kuhn J, Müller H, Salzig D, Czermak P (2015) A rapid method for an offline glycerol determination during microbial fermentation. Electron J Biotechnol 18(3):252–255

    CAS  Google Scholar 

  • Kumar A, Poonam B, Lal CR (2010) Isolation and molecular characterization of phosphate solubilizing Enterobacter and Exiguobacterium species from paddy fields of Eastern Uttar Pradesh, India. Afr J Microbiol Res 4:820–829

    CAS  Google Scholar 

  • Kumari R, Pramanik K (2012) Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production. J Biosci Bioeng 114(6):622–629

    CAS  PubMed  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts, a taxonomy study, 5th edn. Elsevier Science Publisher, Amsterdam, p 2354

    Google Scholar 

  • Kurtzman CP, Fell JW (1998) The yeasts-a taxonomic study, vol 149, 4th edn. Elsevier Science Publ BV, Amsterdam, p 1055

    Google Scholar 

  • Leandro MJ, Sychrova H, Prista C, Loureiro-Dias MC (2011) The osmotolerant fructophilic yeast Zygosaccharomyces rouxii employs two plasma-membrane fructose uptake systems belonging to a new family of yeast sugar transporters. Microbiology 157(2):601–608

    CAS  PubMed  Google Scholar 

  • Lin Y, Tanka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    CAS  PubMed  Google Scholar 

  • Lodder J, Kreger-Van Rij NJW (1952) The yeasts: a taxonomic study. North-Holland Pub, Amsterdam, p 713

    Google Scholar 

  • Martinez F, Corio-Costet MF, Levis C, Coarer M, Fermaud M (2008) New PCR primers applied to characterize distribution of Botrytis cinerea populations in French vineyards. Vitis 47:217–226

    CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem 31:426–428

    CAS  Google Scholar 

  • Mirończuk AM, Rzechonek DA, Biegalska A, Rakicka M, Dobrowolski A (2016) A novel strain of Yarrowia lipolytica as a platform for value-added product synthesis from glycerol. Biotechnol Biofuels 9:180

    PubMed  PubMed Central  Google Scholar 

  • Nancib N, Nancib A, Boudjelal A, Benslimane C, Blanchard F, Boudrant J (2001) The effect of supplementation by different nitrogen sources on the production of lactic acid from date juice by Lactobacillus casei subsp, rhamnosus. Bioresour Technol 78:149–153

    CAS  PubMed  Google Scholar 

  • Nissen T, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J (2000) Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast 16:463–474

    CAS  PubMed  Google Scholar 

  • Orlic S, Arroyo-Lopez FN, Huic-Babic K, Lucilla I, Querol A, Barrio E (2010) A comparative study of the wine fermentation performance of Saccharomyces paradoxus under different nitrogen concentrations and glucose/fructose ratios. J Appl Microbiol 108:73–80

    CAS  PubMed  Google Scholar 

  • Overkamp KM, Bakker BM, Kötter P, Luttik MAH, van Dijken JP, PronK JT (2002) Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl Environ Microbiol 68(6):2814–2821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padilla B, Gil J, Manzanares P (2018) Challenges of the non-conventional yeast Wickerhamomyces anomalus in winemaking. Ferment 4(3):68

    Google Scholar 

  • Passoth V, Fredlund E, Druvefors UÄ, Schnürer J (2006) Biotechnology, physiology and genetics of the yeast Pichia anomala. FEMS Yeast Res 6(1):3–13

    CAS  PubMed  Google Scholar 

  • Patil SV (2013) Kinetics, simulation and scale up of process for fermentative production of glycerol and arabitol using Hansenula anomala. PhD thesis in biotechnology, University of Pune, India, p 258

  • Petrovska B, Winkelhausen E, Kuzmanova S (1999) Glycerol production by yeasts under osmotic and sulfite stress. Can J Microbiol 45:695–699

    CAS  PubMed  Google Scholar 

  • Piddocke M, Kreisz S, Heldt-Hansen H, Nielsen K, Olsson L (2009) Physiological characterization of brewer’s yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts. Appl Microbiol Biotechnol 84:453–464

    CAS  PubMed  Google Scholar 

  • Remize F, Barnavon L, Dequin S (2001) Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae. Metab Eng 3:301–312

    CAS  PubMed  Google Scholar 

  • Revin V, Atykyan N, Lyovina E, Dragunova Y, Ushkina V (2018) Effect of ultraviolet radiation on physiological and biochemical propertiesof yeast Saccharomyces cerevisiae during fermentation of ultradispersed starch raw material. Electron J Biotechnol 31:61–66

    CAS  Google Scholar 

  • Sahoo DK, Agarwal GP (2001) An investigation on glycerol biosynthesis by an osmophilic yeast in a bioreactor. Process Biochem 36:839–846

    CAS  Google Scholar 

  • Sancar GB, Smith FW (1989) Interactions between yeast photolyase and nucleotide excision repair proteins in Saccharomyces cerevisiae and Escherichia coli. Mol Cell Biol 9(11):4767–4776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savergave LS, Gadre RV, Vaidya BK, Jogdand VV (2013) Two-stage fermentation process for enhanced mannitol production using Candida magnoliae mutant R9. Bioprocess Biosyst Eng 36:193–203

    CAS  PubMed  Google Scholar 

  • Shahsavarani H, Sugiyama M, Kaneko Y, Chuenchit B, Harashima S (2012) Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Biotechnol Adv 30(6):1289–1300

    CAS  PubMed  Google Scholar 

  • Shen B, Hohmann S, Jensen RG, Bohnert HJ (1999) Roles of sugar alcohols in osmotic stress adaptation. replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121:45–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva-Graça M, Lucas C (2003) Physiological studies on long-term adaptation to salt stress in the extremely halotolerant yeast Candida versatilis CBS 4019 (syn. C. halophila). FEMS Yeast Res 3(3):247–260

    PubMed  Google Scholar 

  • Sivasankaran C, Ramanujam PK, Shanmugam S, Sathendra R, Balasubramanian B, Mani J (2014) Comparative study on Candida sp. for the production of glycerol. Chem Tech 6(12):5058–5063

    CAS  Google Scholar 

  • Snoep L, Mrwebi M, Schuurmans M, Rohwer JM, Teixeira de Mattos MJ (2009) Control of specific growth rate in Saccharomyces cerevisiae. Microbiology 155:1699–1707

    CAS  PubMed  Google Scholar 

  • Sulieman A, Esra AM, Abdelgadir WS (2015) Isolation and identification of yeasts from the different stages of Hulu-mur fermentation. J Microbiol Res 5(2):71–76

    Google Scholar 

  • Taherzadeh MJ, Adler L, Lidén G (2002) Strategies for enhancing fermentative production of glycerol—a review. Enz Microb Technol 31:53–66

    CAS  Google Scholar 

  • Tapia VE, Anschau A, Coradini AL, Franco T, Deckmann AC (2012) Optimization of lipid production by the oleaginous yeast Lipomyces starkeyi by random mutagenesis coupled to cerulenin screening. AMB Express 2:1–8

    Google Scholar 

  • Thome PE (2007) Cell wall involvement in the glycerol response to high osmolarity in the halotolerant yeast Debaryomyces hansenii. Antonie Leeuwenhoek 91:229–235

    CAS  PubMed  Google Scholar 

  • Varela C, Pizarro F, Agosin E (2004) Biomass content governs fermentation rate in nitrogen-deficient wine musts. Appl Environ Microbiol 70(6):3392–3400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vijaikishore P, Karanth NG (1986) Glycerol production by immobilized cells of Pichia farinosa. Biotechnol Lett 8:257–260

    CAS  Google Scholar 

  • Walker GM (1998) Yeast physiology and biotechnology. Wiley, London, p 362 (ISBN: 978-0-471-96446-9)

    Google Scholar 

  • Walker GM (2011) Pichia anomala: cell physiology and biotechnology relative to other yeasts. Antonie Leeuwenhoek 99(1):25–34

    CAS  PubMed  Google Scholar 

  • Wang ZX, Zhuge J, Fang H, Prior BA (2001) Glycerol production by microbial fermentation: a review. Biotechnol Adv 19:201–223

    CAS  PubMed  Google Scholar 

  • Watanabe T, Watanabe I, Yamamoto M, Ando A, Nakamura T (2011) A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance. Bioresour Technol 102(2):1844–1848

    CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc, New York, pp 315–322

    Google Scholar 

  • Yaçlin SK, Ӧzbas ZY (2005) Determination of growth and glycerol production kinetics of a wine yeast strain Saccharomyces cerevisiae Kalecik1 in different substrate media. World J Microb Biot 21:1303–1310

    Google Scholar 

  • Yaçlin SK, Ӧzbas ZY (2008) Effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine strains of Saccharomyces cerevisiae from Turkey. Braz J Microbiol 39:325–332

    Google Scholar 

  • Yin Y, Petes TD (2013) Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae. PLoS Genet 9(10):e1003894

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liu D, Xie D, Wang Y, Sun Y (2002) Production of glycerol by fermentation using osmophilic yeast Cadida krusei with different starchy substrates. Enz Microbiol Technol 30(6):758–762

    CAS  Google Scholar 

  • Zhang G, Lin Y, Qi X, Wang L, He P, Wang Q, Ma Y (2015a) Genome shuffling of the nonconventional yeast Pichia anomala for improved sugar alcohol production. Microb Cell Fact 14(1):112

    PubMed  PubMed Central  Google Scholar 

  • Zhang M, Shi J, Jianga L (2015b) Modulation of mitochondrial membrane integrity and ROS formation by high temperature in Saccharomyces cerevisiae. Electron J Biotechnol 18(3):202–209

    CAS  Google Scholar 

  • Zhang M, Wu W, Gu, X, Weichen Y, Qi F, Jiang X, Huang J (2018) Mathematical modeling of fed-batch fermentation of Schizochytrium sp. FJU-512 growth and DHA production using a shift control strategy. Biotech 3:162. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840084/

  • Zhao XQ, Bai FW (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 144(1):23–30

    CAS  PubMed  Google Scholar 

  • Zhao X, Procopio S, Becker T (2015) Flavor impacts of glycerol in the processing of yeast fermented beverages: a review. J Food Sci Technol 52(12):7588–7598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuge J, Fang HY, Wang ZX, Chen DZ, Jin HR, Gu HL (2001) Glycerol production by a novel osmotolerant yeast Candida glycerinogenes. Appl Microbiol Biotechnol 55:686–692

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel-Hamied M. Rasmey.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hawary, H., Rasmey, AH.M., Aboseidah, A.A. et al. Enhancement of glycerol production by UV-mutagenesis of the marine yeast Wickerhamomyces anomalus HH16: kinetics and optimization of the fermentation process. 3 Biotech 9, 446 (2019). https://doi.org/10.1007/s13205-019-1981-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1981-4

Keywords

Navigation