Skip to main content
Log in

Sonohydrolysis using an enzymatic cocktail in the preparation of free fatty acid

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this work, the concept of lipase cocktail has been proposed in the ultrasound-assisted hydrolysis of coconut oil. Lipase from Thermomyces lanuginosus (TLL), lipase from Rhizomucor miehei (RML), and lipase B from Candida antarctica (CALB) were evaluated as biocatalysts in different combinations. The best conversion (33.66%) was achieved using only RML; however, the best lipase cocktail (75% RML and 25% CALB) proposed by the triangular response surface was used to achieve higher conversions. At the best lipase cocktail, reaction parameters [temperature, biocatalyst content and molar ratio (water/oil)] were optimized by a Central Composite Design, allowing to obtain more than 98% of conversion in the hydrolysis of coconut oil in 3 h of incubation at 37 kHz, 300 W and 45 °C by using 20% of the lipase cocktail (w/w) and a molar ratio of 7.5:1 (water/oil). The lipase cocktail retained about 50% of its initial activity after three consecutive cycles of hydrolysis. To the authors’ knowledge, up to date, this communication is the first report in the literature for the ultrasound-assisted hydrolysis of coconut oil catalyzed by a cocktail of lipases. Under ultrasound irradiation, the concept of lipase cocktail was successfully applied, and this strategy could be useful for the other types of reactions using heterogeneous substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aga SÁ, de Meneses AC, de Araújo PHH, de Oliveira D (2017) A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends Food Sci Technol 69:95–105

    Article  CAS  Google Scholar 

  • Alves JS, Vieira NS, Cunha AS et al (2014) Combi-lipase for heterogeneous substrates: a new approach for hydrolysis of soybean oil using mixtures of biocatalysts. RSC Adv 4:6863–6868

    Article  CAS  Google Scholar 

  • Al-Zuhair S, Hasan M, Ramachandran KB (2003) Kinetics of the enzymatic hydrolysis of palm oil by lipase. Process Biochem 38:1155–1163

    Article  CAS  Google Scholar 

  • Anderson EM, Larsson KM, Kirk O (1998) One biocatalyst many applications: the use of Candida antarctica B-lipase in organic synthesis. Biocatal and Biotransformation 16:181–204

    Article  CAS  Google Scholar 

  • Bansode SR, Rathod VK (2017) An investigation of lipase catalysed sonochemical synthesis: a review. Ultrason Sonochem 38:503–529

    Article  CAS  PubMed  Google Scholar 

  • Bonazza HL, Manzo RM, Santos JCS, Mammarella EJ (2018) Operational and thermal stability analysis of Thermomyces lanuginosus lipase covalently immobilized onto modified chitosan supports. Appl Biochem Biotechnol 184:182–196

    Article  CAS  PubMed  Google Scholar 

  • Choi JM, Han SS, Kim HS (2015) Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv 33:1443–1454

    Article  CAS  PubMed  Google Scholar 

  • Csoka L, Katekhaye SN, Gogate PR (2011) Comparison of cavitational activity in different configurations of sonochemical reactors using model reaction supported with theoretical simulations. Chem Eng J 178:384–390

    Article  CAS  Google Scholar 

  • Cunha AG, Besteti MD, Manoel EA et al (2014) Preparation of core–shell polymer supports to immobilize lipase B from Candida antarctica: Effect of the support nature on catalytic properties. J Mol Catal B Enzym 100:59–67

    Article  CAS  Google Scholar 

  • da Fonseca AM, dos Santos JCS, de Souza MCM et al (2020) The use of new hydrogel microcapsules in coconut juice as biocatalyst system for the reaction of quinine. Ind Crops Prod 145:111890

    Article  CAS  Google Scholar 

  • de Oliveira UMF, Lima de Matos LJB, de Souza MCM et al (2018) Effect of the presence of surfactants and immobilization conditions on catalysts’ properties of Rhizomucor miehei lipase onto chitosan. Appl Biochem Biotechnol 184:1263–1285

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira UMF, Lima de Matos LJB, de Souza MCM et al (2019) Efficient biotechnological synthesis of flavor esters using a low-cost biocatalyst with immobilized Rhizomucor miehei lipase. Mol Biol Rep 46:597–608

    Article  PubMed  CAS  Google Scholar 

  • de Souza TC, de Fonseca T, Costa JA et al (2016) Cashew apple bagasse as a support for the immobilization of lipase B from Candida antarctica: application to the chemoenzymatic production of (R)-Indanol. J Mol Catal B Enzym 130:58–69

    Article  CAS  Google Scholar 

  • Djoudi W, Aissani-Benissad F, Bourouina-Bacha S (2007) Optimization of copper cementation process by iron using central composite design experiments. Chem Eng J 133:1–6

    Article  CAS  Google Scholar 

  • dos Santos JCS, Rueda N, Gonçalves LRB, Fernandez-Lafuente R (2015) Tuning the catalytic properties of lipases immobilized on divinylsulfone activated agarose by altering its nanoenvironment. Enzyme Microb Technol 77:1–7

    Article  CAS  PubMed  Google Scholar 

  • dos Santos JCS, Bonazza HL, de Matos LJBL et al (2017) Immobilization of CALB on activated chitosan: Application to enzymatic synthesis in supercritical and near-critical carbon dioxide. Biotechnol Rep 14:16–26

    Article  Google Scholar 

  • Fernandez-Lafuente R (2010) Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Catal B Enzym 62:197–212

    Article  CAS  Google Scholar 

  • Foresti ML, Ferreira ML (2005) Solvent-free ethyl oleate synthesis mediated by lipase from Candida antarctica B adsorbed on polypropylene powder. Catal Today 107–108:23–30

    Article  CAS  Google Scholar 

  • Galgali A, Gawas SD, Rathod VK (2018) Ultrasound assisted synthesis of citronellol laurate by using Novozym 435. Catal Today 309:133–139

    Article  CAS  Google Scholar 

  • Garud SS, Karimi IA, Kraft M (2017) Design of computer experiments: a review. Comput Chem Eng 106:71–95

    Article  CAS  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv 27:782–798

    Article  CAS  PubMed  Google Scholar 

  • Hibbert DB (2012) Experimental design in chromatography: a tutorial review. J Chromatogr B 910:2–13

    Article  CAS  Google Scholar 

  • Ho WWS, Ng HK, Gan S (2016) Advances in ultrasound-assisted transesterification for biodiesel production. Appl Therm Eng 100:553–563

    Article  CAS  Google Scholar 

  • Kulkarni SR, Pandit AB (2005) Enzymatic hydrolysis of castor oil: an approach for rate enhancement and enzyme economy. Indian J Biotechnol 4:241–245

    CAS  Google Scholar 

  • Lima GV, da Silva MR, de Sousa FT et al (2017) Chemoenzymatic synthesis of (S)-Pindolol using lipases. Appl Catal A Gen 546:7–14

    Article  CAS  Google Scholar 

  • Liu Y, Jin Q, Shan L et al (2008) The effect of ultrasound on lipase-catalyzed hydrolysis of soy oil in solvent-free system. Ultrason Sonochem 15:402–407

    Article  CAS  PubMed  Google Scholar 

  • Mateo C, Palomo JM, Fernandez-Lorente G et al (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  • Melo A, Silva F, dos Santos JC et al (2017) Synthesis of benzyl acetate catalyzed by lipase immobilized in nontoxic chitosan-polyphosphate beads. Molecules 22:2165

    Article  PubMed Central  CAS  Google Scholar 

  • Monteiro RRC, Lima PJM, Pinheiro BB et al (2019) Immobilization of Lipase A from Candida antarctica onto Chitosan-Coated Magnetic Nanoparticles. Int J Mol Sci 20:4018

    Article  CAS  PubMed Central  Google Scholar 

  • Monteiro RRC, Virgen-Ortiz JJ, Berenguer-Murcia Á et al (2020) Biotechnological relevance of the lipase A from Candida antarctica. Catal Today. https://doi.org/10.1016/j.cattod.2020.03.026

    Article  Google Scholar 

  • Ortiz C, Ferreira ML, Barbosa O et al (2019) Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 9:2380–2420

    Article  CAS  Google Scholar 

  • Pinheiro MP, Rios NS, de Fonseca T et al (2018) Kinectic resolution of drug intermediates catalyzed by lipase B from Candida antarctica immobilized on immobead-350. Biotech Progress 34:878–889

    Article  CAS  Google Scholar 

  • Pinheiro BB, Rios NS, Rodríguez Aguado E et al (2019a) Chitosan activated with divinyl sulfone: a new heterofunctional support for enzyme immobilization. Application in the immobilization of lipase B from Candida antarctica. Int J Biol Macromol 130:798–809

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro MP, Monteiro RRC, Silva FFM et al (2019b) Modulation of Lecitase properties via immobilization on differently activated Immobead-350: Stabilization and inversion of enantiospecificity. Process Biochem 87:128–137

    Article  CAS  Google Scholar 

  • Ramos EZ, Júnior RHM, De Castro PF et al (2015) Production and immobilization of Geotrichum candidum lipase via physical adsorption on eco-friendly support: Characterization of the catalytic properties in hydrolysis and esterification reactions. J Mol Catal B Enzym 118:43–51

    Article  CAS  Google Scholar 

  • Reis CL, de Sousa EYA, Serpa JF et al (2019) Design of immobilized enzyme biocatalysis: drawbacks and opportunities. Quim Nova 42:768–783

    CAS  Google Scholar 

  • Rios NS, Pinheiro BB, Pinheiro MP et al (2018) Biotechnological potential of lipases from Pseudomonas: Sources, properties and applications. Process Biochem 75:99–120

    Article  CAS  Google Scholar 

  • Rios NS, Morais EG, dos Galvão W et al (2019) Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents. Int J Biol Macromol 141:313–324

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues RC, Ayub MAZ (2011) Effects of the combined use of Thermomyces lanuginosus and Rhizomucor miehei lipases for the transesterification and hydrolysis of soybean oil. Process Biochem 46:682–688

    Article  CAS  Google Scholar 

  • Rooney D, Weatherley LR (2001) The effect of reaction conditions upon lipase catalysed hydrolysis of high oleate sunflower oil in a stirred liquid-liquid reactor. Process Biochem 36:947–953

    Article  CAS  Google Scholar 

  • Rosenthal K, Lütz S (2018) Recent developments and challenges of biocatalytic processes in the pharmaceutical industry. Curr Opin Green Sustain Chem 11:58–64

    Article  Google Scholar 

  • Sancheti SV, Gogate PR (2017) A review of engineering aspects of intensification of chemical synthesis using ultrasound. Ultrason Sonochem 36:527–543

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Chaurasia SP, Dalai AK (2013) Enzymatic hydrolysis of cod liver oil for the fatty acids production. Catal Today 207:93–100

    Article  CAS  Google Scholar 

  • Soares CMF, Castro HF, Moraes FF et al (1999) Characterization and utilization of Candida rugosa lipase immobilized on controlled pore silica. Appl Biochem Biotechnol 79:745–757

    Article  Google Scholar 

  • Stillwell W (2016) Introduction to Biological Membranes. In: An introduction to biological membranes. Elsevier, pp 3–15. https://doi.org/10.1016/B978-0-444-63772-7.00001-4

  • Uppenberg J, Ohmer N, Norin M et al (1995) Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocketfor secondary alcohols. Biochemistry 34:16838–16851

    Article  CAS  PubMed  Google Scholar 

  • Verdasco-Martín CM, Villalba M, dos Santos JCS et al (2016) Effect of chemical modification of Novozym 435 on its performance in the alcoholysis of camelina oil. Biochem Eng J 111:75–86

    Article  CAS  Google Scholar 

  • Waghmare GV, Rathod VK (2016) Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition. Ultrason Sonochem 32:60–67

    Article  CAS  PubMed  Google Scholar 

  • Wenlei X, Ning M (2009) Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energy Fuels 23:1347–1353

    Article  CAS  Google Scholar 

  • Wohlgemuth R (2010) Biocatalysis-key to sustainable industrial chemistry. Curr Opin Biotechnol 21:713–724

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Ma N (2010) Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass Bioenergy 34:890–896

    Article  CAS  Google Scholar 

  • Yadav GD, Borkar IV (2009) Synthesis of n-butyl acetamide over immobilized lipase. J Chem Technol Biotechnol 84:420–426

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of Brazilian Agencies for Scientific and Technological Development, Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP), project number BP3-0139-00005.01.00/18, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), project number 422942/2016-2 and 408790/2016-4, Coordenação de Aperfeiçoamento de Ensino Superior (CAPES). In addition, we gratefully acknowledge the supply of Lipases by Mr. Martinez (Novozymes, Spain).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, validation, formal analysis, investigation and methodology: JESS, RRCM, TGR, AKSB and JCSS; Software: RRCM; data curation, writing—original draft preparation: JESS, RRCM, TGR and KSM and FTTC; resources: AKSB, MCMS and JCSS; Writing—review and editing, visualization, supervision, project administration:, RRCM, MCMS and JCSS.

Corresponding authors

Correspondence to Maria C. M. de Souza or José C. S. dos Santos.

Ethics declarations

Conflict of interest

There is no conflict of interest related to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, J.E.S., Monteiro, R.R.C., Rocha, T.G. et al. Sonohydrolysis using an enzymatic cocktail in the preparation of free fatty acid. 3 Biotech 10, 254 (2020). https://doi.org/10.1007/s13205-020-02227-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02227-z

Keywords

Navigation