Skip to main content

Advertisement

Log in

UPLC–MS–QTOF analysis and antifungal activity of Cumaru (Amburana cearensis)

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

This study was aimed at investigating the phytochemical constituents, antifungal properties and antibiotic-modifying activity of the aqueous crude extract and fractions of Amburana cearensis seeds (CEFAC). The CEFAC were chemically characterized by LC–MS/MS–QTOF. In addition, the antifungal activity was assayed by the microdilution method against strains of Candida albicans. The phytochemical profile of CEFAC exhibited phenolic compounds, organic acids, and polyphenols. The results of the assessment of antifungal activity reveled an IC50 ranging from 45.6 to 2048 µg/mL. Interestingly, when CEFAC was associated with Fluconazole, we evidenced a decreased IC50 (1.81–11.9 µg/mL), suggesting a synergism with antibiotic. It was possible to identify in the crude extract and fractions several phenolic compounds, organic acids, and some polyphenols in positive ionization mode. These results suggest that CEFAC may present compounds with the ability to interact and act synergistically with antimicrobial drugs, highlighting its potential as an alternative source for the development of new antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agra MF, Baracho GS, Nurit K, Basílio IJLD, Coelho VPM (2007) Medicinal and poisonous diversity of the flora of “Cariri Paraibano”, Brazil. J Ethnopharmacol 111:383–395

    Article  CAS  Google Scholar 

  • Alves CT, Ferreira ICFR, Barros L, Silva S, Azeredo J, Henriques M (2014) Antifungal activity of phenolic compounds identified in flowers from North Eastern Portugal against Candida species. Future Microbiol 9:139–146. https://doi.org/10.2217/fmb.13.147

    Article  CAS  PubMed  Google Scholar 

  • Andrade CA, Costa CK, Bora K, Miguel MD, Miguel OG, Kerber VA (2007) Determination of the phenolic content and evaluation of the antioxidant activity of Acacia podalyriifolia A. Cunn. ex G. Don, Leguminosae-mimosoideae. Revista Brasileira de Farmacognosia 17:231–235. https://doi.org/10.1590/s0102-695x2007000200017

    Article  Google Scholar 

  • Angelo PM, Jorge N (2007) Phenolic compounds in foods—a brief review. Rev Inst Adolfo Lutz 66:1–9

    CAS  Google Scholar 

  • Bin XuH, Huang ZQ (2007) Icariin enhances endothelial nitric-oxide synthase expression on human endothelial cells in vitro. Vascul Pharmacol 47:18–24. https://doi.org/10.1016/j.vph.2007.03.002

    Article  CAS  Google Scholar 

  • Bosqueiro ALD (1996) Plantas como fonte de fitofármaco. Ciência Educação 02:91–96

    Google Scholar 

  • Bourgaud F, Hehn A, Larbat R, Doerper S, Gontier E, Kellner S, Matern U (2006) Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem Rev 5:293–308. https://doi.org/10.1007/s11101-006-9040-2

    Article  CAS  Google Scholar 

  • Bravo JAB, Sauvain M, Gimenez AT, Muñoz VO, Callapa J, Le Men-Olivier L, Massiot G, Lavaud C (1999) Bioactive phenolic glycosides from Amburana cearensis. Phytochemistry 50:71–74. https://doi.org/10.1016/S0031-9422(98)00497-X

    Article  Google Scholar 

  • Cabello-Hurtado F, Durst F, Jorrín JV, Werck-Reichhart D (1998) Coumarins in Helianthus tuberosus: characterization, induced accumulation and biosynthesis. Phytochemistry 49:1029–1036. https://doi.org/10.1016/S0031-9422(97)01036-4

    Article  CAS  Google Scholar 

  • Calabrese EC, Castellano S, Santoriello M, Sgherri C, Quartacci MF, Calucci L, Warrilow AGS, Lamb DC, Kelly SL, Milite C, Granata I, Sbardella G, Stefancich G, Maresca B, Porta A (2013) Antifungal activity of azole compounds CPA18 and CPA109 against azole-susceptible and -resistant strains of Candida albicans. J Antimicrob Chemother 68:1111–1119. https://doi.org/10.1093/jac/dks506

    Article  CAS  PubMed  Google Scholar 

  • Calixto Júnior JT, Morais SM, Martins CG, Vieira LG, Morais-Braga MFB, Carneiro JNP, Machado AJP, Menezes IRA, Tintino SR, Coutinho HDM (2015) Phytochemical analysis and modulation of antibiotic activity by Luehea paniculata Mart. & Zucc. (Malvaceae) in multiresistant clinical isolates of Candida Spp. BioMed Research International 2015:1–10

    Article  Google Scholar 

  • Canuto KM, Leal LKAM, Viana GSB, Bezerra AME, Silveira E (2004) Aspectos químicos do estudo interdisciplinar (química, agronomia e farmacologia) de A. cearensis. In: XVIII Simpósio de Plantas Medicinais Do Brasil

  • Carrillo-Muñoz AJ, Giusiano G, Ezkurra PA, Quindós G (2006) Antifungal agents: mode of action in yeast cells. Rev Esp Quimioterap 19:130–139

    Google Scholar 

  • Carvalho P (1994) Espécies Florestais Brasileiras : recomendações silviculturais, potencialidades e uso da madeira. EMBRAPA

  • Chiriac CI, Tanasa F, Onciu M (2005) A novel approach in cinnamic acid synthesis: direct synthesis of cinnamic acids from aromatic aldehydes and aliphatic carboxylic acids in the presence of boron tribromide. Molecules 10:481–487. https://doi.org/10.3390/10020481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho HDM, Costa JGM, Siqueira-Júnior JP, Lima EO (2008) In vitro anti-staphylococcal activity of Hyptis martiusii Benth against methicillin-resistant Staphylococcus aureus-MRSA strains. Braz J Pharmacogn 18:670–675

    Article  CAS  Google Scholar 

  • Day JN, Chau TTH, Wolbers M, Mai PP, Dung NT, Mai NH, Phu NH, Nghia HD, Phong ND, Thai CQ, Thai LH, Chuong LV, Sinh DX, Duong VA, Hoang TN, Diep PT, Campbell JI, Sieu TPM, Baker SG, Chau NVV, Hien TT, Lalloo DG, Farrar JJ (2013) Combination antifungal therapy for cryptococcal meningitis. N Engl J Med 368:1291–1302. https://doi.org/10.1056/NEJMoa1110404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewick PM (2009) Medicinal natural products: a biosynthetic approach, 3rd edn. Wiley

  • Ekmekcioglu C, Feyertag J, Marktl W (1998) Cinnamic acid inhibits proliferation and modulates brush border membrane enzyme activities in Caco-2 cells. Cancer Lett 128:137–144. https://doi.org/10.1016/S0304-3835(98)00073-1

    Article  CAS  PubMed  Google Scholar 

  • Ernst EJ, Klepser ME, Ernst ME, Messer SA, Pfaller MA (1999) In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods. Diagn Microbiol Infect Dis 33:75–80

    Article  CAS  Google Scholar 

  • Fan JJ, Cao LG, Wu T, Wang DX, Jin D, Jiang S, Zhang ZY, Bi L, Pei GX (2011) The dose-effect of icariin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cells. Molecules 16:10123–10133. https://doi.org/10.3390/molecules161210123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira JFS, Luthria DL, Sasaki T, Heyerick A (2010) Flavonoids from Artemisia annua L. As antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules 15:3135–3170. https://doi.org/10.3390/molecules15053135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fica CA (2004) Tratamiento de infecciones fúngicas sistémicas Primera parte: fluconazol, itraconazol y voriconazol. Revista Chilena de Infectología 21:26–38. https://doi.org/10.4067/s0716-10182004000100004

    Article  Google Scholar 

  • Flores G, Dastmachi K, Wu SB, Whalen K (2013) Phenolic-rich extract from the Costa Rican guava (Psidium friedrichsthalianum) pulp with antioxidant and anti-inflammatory activity. Potential for COPD therapy. Food Chem 141:889–895. https://doi.org/10.1016/j.physbeh.2017.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajdács M (2019) The concept of an ideal antibiotic: implications for drug design. Molecules. https://doi.org/10.3390/molecules24050892

    Article  PubMed  PubMed Central  Google Scholar 

  • Giada MLR (2013) Food phenolic compounds: main classes, sources and their antioxidant power. InTech, Croatia. https://doi.org/10.5772/51687

    Book  Google Scholar 

  • Goulart LS, de Souza WWR, Vieira CA, de Lima JS, de Olinda RA, de Araújo C (2018) Oral colonization by Candida species in HIV-positive patients: association and antifungal susceptibility study. Einstein, Sao Paulo, p 16

    Google Scholar 

  • Haida K, Parzianello L, Werner S, Garcia D (2007) Avaliação in vitro da atividade antimicrobiana de oito espécies de plantas medicinais. Arq Cienc Saude Unipar 11:185–192

    Google Scholar 

  • Hoult JRS, Payá M (1996) Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential. Gen Pharmacol 27:713–722. https://doi.org/10.1016/0306-3623(95)02112-4

    Article  CAS  PubMed  Google Scholar 

  • Hussain SH, Latif A, Cox RJ, Simpson TJ, Ali M, Arfan M, Uddin G (2014) Phytochemicals from the aerial parts of Ligularia thomsonii and their radical scavenging activity. Phytochem Lett 7:6–10. https://doi.org/10.1016/j.phytol.2013.09.002

    Article  CAS  Google Scholar 

  • Ibrahim M, Abu-Reidah A, Contreras M, Arraez-Roman D, Fernandez-Gutierrez A, Segura-Carretero A (2014) UHPLC-ESI–QTOF–MS-based metabolic profiling of Vicia faba L. (Fabaceae) seeds as a key strategy for characterization in foodomics. Electrophoresis 35:1571–1581. https://doi.org/10.1002/elps.201300646

    Article  CAS  Google Scholar 

  • Javadpour MM, Juban MM, Lo WCJ, Bishop SM, Alberty JB, Cowell SM, Becker CL, McLaughlin ML (1996) De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem 39:3107–3113

    Article  CAS  Google Scholar 

  • Kim JH, Mun YJ, Im SJ, Han JH, Lee HS, Woo WH (2001) Effects of the aqueous extract of Epimedii Herba on the antibody responses in mice. Int Immunopharmacol 1:935–944. https://doi.org/10.1016/S1567-5769(01)00030-3

    Article  CAS  PubMed  Google Scholar 

  • Klančnik A, Piskernik S, Jeršek B, Možina SS (2010) Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J Microbiol Methods 81:121–126. https://doi.org/10.1016/j.mimet.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  • Ksiezopolska E, Gabaldón T (2018) Evolutionary emergence of drug resistance in Candida opportunistic pathogens. Genes 9:461–486

    Article  Google Scholar 

  • Ksouri S, Djebir S, Bentorki AA, Gouri A, Hadef Y, Benakhla A (2017) Antifungal activity of essential oils extract from Origanum floribundum Munby, Rosmarinus officinalis L. and Thymus ciliatus Desf. againstCandida albicans isolated from bovine clinical mastitis. J Mycol Med 27:245–249

    Article  CAS  Google Scholar 

  • Lavola A (1998) Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance. Tree Physiol 18:53–58. https://doi.org/10.1093/treephys/18.1.53

    Article  CAS  PubMed  Google Scholar 

  • Leal LKAM, Matos ME, Matos FJA, Ribeiro RA, Ferreira FV, Viana GSB (1997) Antinociceptive and antiedematogenic effects of the hydroalcoholic extract and coumarin from Torresea cearensis Fr. All. Phytomedicine 4:221–227. https://doi.org/10.1016/S0944-7113(97)80071-2

    Article  CAS  PubMed  Google Scholar 

  • Leal LKAM, Nechio M, Silveira ER, Canuto KM, Fontenele JB, Ribeiro RA, Viana GSB (2003) Anti-inflammatory and smooth muscle relaxant activities of the hydroalcoholic extract and chemical constituents from Amburana cearensis A. C. Smith. Phytother Res 17:335–340

    Article  CAS  Google Scholar 

  • Leal LKAM, Fonseca FN, Pereira FA, Canuto KM, Felipe CFB, Fontenele JB, Pitombeira MV, Silveira ER, Viana GSB (2008) Protective effects of amburoside A, a phenol glucoside from Amburana cearensis, against CCl4-induced hepatotoxicity in rats. Planta Med 74:497–502. https://doi.org/10.1055/s-2008-1074501

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Kuo HC, Chu CY, Wang CJ, Lin WC, Tseng TH (2003) Involvement of tumor suppressor protein p53 and p38 MAPK in caffeic acid phenethyl ester-induced apoptosis of C6 glioma cells. Biochem Pharmacol 66:2281–2289. https://doi.org/10.1016/j.bcp.2003.07.014

    Article  CAS  PubMed  Google Scholar 

  • Lima LR, Cavalcante RRL, Martins MCC, Parente DM, Cavalcante AAMCC (2013) Avaliação da atividade antiedematogênica, antimicrobiana e mutagênica das sementes de Amburana cearensis (A. C. Smith) (Imburana-de-cheiro). Revista Brasileira de Plantas Medicinais 15:415–422

    Article  Google Scholar 

  • Maia GN (2004) Caatinga: Árvores e Arbustos e Suas Utilidades. Printcolor gráfica e Editora, Fortaleza

    Google Scholar 

  • Menozzi CAC, Castelo-Branco FS, França RRF, Domingos JLO, Boechat N (2017) Optimization of fluconazol synthesis: an important azole antifungal drug. Revista Virtual de Quimica 9:1216–1234. https://doi.org/10.21577/1984-6835.20170071

    Article  Google Scholar 

  • Morais-Braga MFB, Carneiro JNP, Machado AJT, dos Santos ATL, Sales DL, Lima LF, Figueredo FG, Coutinho HDM (2016) Psidium guajava L., from ethnobiology to scientific evaluation: Elucidating bioactivity against pathogenic microorganisms. J Ethnopharmacol 194:1140–1152

    Article  Google Scholar 

  • Moure A, Cruz JM, Franco D, Manuel Domínguez J, Sineiro J, Domínguez H, Núñez MJ, Carlos Parajó J (2001) Natural antioxidants from residual sources. Food Chem 72:145–171. https://doi.org/10.1016/S0308-8146(00)00223-5

    Article  CAS  Google Scholar 

  • NCCLS (2012) Método de Referência para Testes de Diluição em Caldo para Determinação da Sensibilidade de Leveduras à Terapia Antifúngica : Norma Aprovada-Segunda Edição

  • Niero ELO (2010) Efeitos de ácido cinâmico sobre melanócitos e células derivadas de melanoma humanos: avaliação do seu potencial antitumoral e de proteção contra danos celulares causados por radiação ultravioleta. Tese de doutorado. https://doi.org/10.11606/T.42.2010.tde-28092010-111234

    Article  Google Scholar 

  • Ning H, Xin ZC, Lin G, Banie L, Lue TF, Lin CS (2006) Effects of icariin on phosphodiesterase-5 activity in vitro and cyclic guanosine monophosphate level in cavernous smooth muscle cells. Urology 68:1350–1354. https://doi.org/10.1016/j.urology.2006.09.031

    Article  PubMed  Google Scholar 

  • Nishikawa K, Fukuda H, Abe M, Nakanishi K, Taniguchi T, Nomura T, Yamaguchi C, Hiradate S, Fujii Y, Okuda K, Shindo M (2013) Substituent effects of cis-cinnamic acid analogues as plant growh inhibitors. Phytochemistry 96:132–147. https://doi.org/10.1016/j.phytochem.2013.08.013

    Article  CAS  PubMed  Google Scholar 

  • Oliveira GP, Silva TMG, Camara CA, Santana ALBD, Moreira MSA, Silva TMS (2017) Isolation and structure elucidation of flavonoids from Amburana cearensis resin and identification of human DNA topoisomerase II-α inhibitors. Phytochem Lett 22:61–70. https://doi.org/10.1016/j.phytol.2017.09.006

    Article  CAS  Google Scholar 

  • Pereira EPL, Braga-De-Souza S, Santos CC, Santos LO, Cerqueira MD, Ribeiro PR, Fernandez LG, Silva VDA, Costa SL (2017) Amburana cearensis seed extracts protect PC-12 cells against toxicity induced by glutamate. Braz J Pharmacogn 27:199–205

    Article  Google Scholar 

  • Plazonić A, Bucar F, Maleš Z, Mornar A, Nigović B, Kujundžić N (2009) Identification and quantification of flavonoids and phenolic acids in Burr Parsley (Caucalis platycarpos L.), using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. Molecules 14:2466–2490

    Article  Google Scholar 

  • Sadeghi M, Zolfaghari B, Senatore M, Lanzotti V (2013) Antifungal cinnamic acid derivatives from Persian leek (Allium ampeloprasum Subsp. Persicum). Phytochem Lett 6:360–363. https://doi.org/10.1016/j.phytol.2013.04.007

    Article  CAS  Google Scholar 

  • Salas MP, Céliz G, Geronazzo H, Daz M, Resnik SL (2011) Antifungal activity of natural and enzymatically-modified flavonoids isolated from citrus species. Food Chem 124:1411–1415. https://doi.org/10.1016/j.foodchem.2010.07.100

    Article  CAS  Google Scholar 

  • Schmeda-Hirschmann G, Burgos-Edwards A, Theoduloz C, Jiménez-Aspee F, Vargas-Arana G (2019) Male sexual enhancers from the Peruvian Amazon. J Ethnopharmacol 229:167–179. https://doi.org/10.1016/j.jep.2018.10.007

    Article  CAS  PubMed  Google Scholar 

  • Shunjun X, Yu J, Zhan J, Yang L, Guo L, Xu Y (2017) Pharmacokinetics, tissue distribution, and metabolism study of icariin in rat. Biomed Res Int 2017:1–17

    Google Scholar 

  • Silva CR, De Andrade NJB, De Sousa CR, Figueiredo NS, Sampaio LS, Magalhães HIF, Cavalcanti BC, Gaspar DM, De Andrade GM, Lima ISP, De Barros VGS, De Moraes MO, Lobo MDP, Grangeiro TB, Nobre HV (2014) Synergistic effect of the flavonoid catechin, quercetin, or epigallocatechin gallate with fluconazole induces apoptosis in Candida tropicalis resistant to fluconazole. Antimicrob Agents Chemother 58:1468–1478. https://doi.org/10.1128/AAC.00651-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva KMA, Chaves TP, Santos RL, Brandão DO, Fernandes FHA, de Ramos JFJL, Medeiros ACD, dos Santos VL, Felismino DC (2015) Modulation of the erythromycin resistance in Staphylococcus aureus by ethanolic extracts of Ximenia americana L and Schinopsis brasiliensis Engl. Bol Latinoam Caribe Plant Med Aromat 14:92–98

    Google Scholar 

  • Simões C, Schenkel E, Gosman G (2007) Farmacognosia: da planta ao medicamento. Editora UFRGS 5

  • Siqueira JF, Sen BH (2004) Fungi in endodontic infections. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97:632–641

    Article  Google Scholar 

  • Soares SE (2002) Phenolic acids as antioxidants. Revista de Nutricao 15:71–81. https://doi.org/10.1590/s1415-52732002000100008

    Article  CAS  Google Scholar 

  • Steiner C, Arnould S, Scalbert A, Manach C (2008) Isoflavones and the prevention of breast and prostate cancer: new perspectives opened by nutrigenomics. Br J Nutr. https://doi.org/10.1017/S0007114508965788

    Article  PubMed  Google Scholar 

  • Stoppa MA, Casemiro LA, Vinholis AHC, Cunha WR, Andrade ML, Silva E, Martins CHG, Furtado NAJC (2009) Comparative study of the recommended methodologies by Clsi and Eucast for activity evaluation antifungal. Quim Nova 32:498–502

    Article  CAS  Google Scholar 

  • Strack D (1997) Phenolic metabolism. In: Dey P, Harborne J (eds) Plant biochemistry. Elsevier, pp 387–416

  • Wei H, Zili L, Yuanlu C, Biao Y, Cheng L, Xiaoxia W, Yang L, Xing W (2011) Effect of icariin on bone formation during distraction osteogenesis in the rabbit mandible. Int J Oral Maxillofac Surg 40:413–418. https://doi.org/10.1016/j.ijom.2010.10.015

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZB, Yang QT (2006) The testosterone mimetic properties of icariin. Asian J Androl 8:601–605. https://doi.org/10.1111/j.1745-7262.2006.00197.x

    Article  CAS  PubMed  Google Scholar 

  • Zida A, Bamba S, Yacouba A, Ouedraogo-Traore R, Guiguemdé RT (2017) Substances naturelles actives sur Candida albicans, sources de nouveaux médicaments antifongiques: revue de la littérature. J Mycol Med 27:1–19

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The autthors are grateful to the Brazilian research agencies FUNCAP, CAPES, CNPq and FINEP for the support of this work.

Author information

Authors and Affiliations

Authors

Contributions

Methodology—antimicrobial assays (MTAO; MVOBA and GMMM); methodology—chemical analysis (PRVR; ESB and EOS); methodology—statistical analysis (IRAM; JCA and EAS); supervision o f work—(HDMC and AFU); resources (VPAL and JIOC).

Corresponding author

Correspondence to Henrique Douglas Melo Coutinho.

Ethics declarations

Ethical statements

This article is according to the international, national and institutional rules considering biodiversity rights.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, M.T.A., de Alencar, M.V.O.B., de Paulo dos Anjos Landim, V. et al. UPLC–MS–QTOF analysis and antifungal activity of Cumaru (Amburana cearensis). 3 Biotech 10, 545 (2020). https://doi.org/10.1007/s13205-020-02551-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02551-4

Keywords

Navigation