Skip to main content

Advertisement

Log in

Brucine-loaded transliposomes nanogel for topical delivery in skin cancer: statistical optimization, in vitro and dermatokinetic evaluation

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The aim of the present study was to develop, optimize brucine-loaded transliposomes (BRC-TL) formulation for dermal delivery of brucine for skin cancer. The BRC-TL formulations were evaluated for vesicle size, entrapment efficiency, and in vitro drug release. The optimized formulation was further evaluated for skin penetration by confocal laser microscopy and dermatokinetic study. The optimized BRC-TL formulation presented sealed lamellar shaped vesicles, with vesicles size, polydispersity index, entrapment efficiency, and in vitro drug release of 136.20 ± 2.87 nm, 0.354 ± 0.02, 86.01 ± 1.27%, and 83.09 ± 2.07%, respectively. Ex vivo permeation study showed that, developed BRC-TL formulation had a 2.4-fold increment in permeation as compared to BRC suspension. Texture analysis showed that the BRC-TL gel presented firmness of 158.91 g, consistency of 615.03 g/s, cohesiveness of  − 115.26 g and a viscosity index of  − 472.05 g/s. The confocal images of rat skin clearly showed the deeper penetration of rhodamine B-loaded TL formulation as compared to the Rhodamine B-hydro alcoholic solution. The optimized BRC-TL formulation demonstrated significantly higher cytotoxicity than placebo liposome and BRC suspension (P < 0.05). Further, the BRC-TL nanogel treated rat skin showed a substantial increase in CSkin max and AUC0–8 in comparison to rat skin treated with BRC conventional gel (P < 0.05). The data revealed that the developed TLs formulation could be a promising drug nanocarrier for brucine dermal delivery in the treatment of skin cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahad A, Aqil M, Ali A (2014a) Investigation of antihypertensive activity of carbopol valsartan transdermal gel containing 1,8-cineole. Int J Biol Macromol 64:144–149

    Article  CAS  Google Scholar 

  • Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M (2014b) Design, formulation and optimization of valsartan transdermal gel containing iso-eucalyptol as novel permeation enhancer: preclinical assessment of pharmacokinetics in Wistar albino rats. Expert Opin Drug Deliv 11:1149–1162

    Article  CAS  Google Scholar 

  • Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M (2016) The ameliorated longevity and pharmacokinetics of valsartan released from a gel system of ultradeformable vesicles. Artif Cells Nanomed Biotechnol 44:1457–1463

    Article  CAS  Google Scholar 

  • Ahad A, Al-Saleh AA, Al-Mohizea AM et al (2017) Formulation and characterization of novel soft nanovesicles for enhanced transdermal delivery of eprosartan mesylate. Saudi Pharm J 25:1040–1046

    Article  Google Scholar 

  • Ahad A, Al-Saleh AA, Al-Mohizea AM et al (2018a) Formulation and characterization of Phospholipon 90 G and tween 80 based transfersomes for transdermal delivery of eprosartan mesylate. Pharm Dev Technol 23:787–793

    Article  CAS  Google Scholar 

  • Ahad A, Raish M, Ahmad A, Al-Jenoobi FI, Al-Mohizea AM (2018b) Development and biological evaluation of vesicles containing bile salt of telmisartan for the treatment of diabetic nephropathy. Artif Cells Nanomed Biotechnol 46:532–539

    Article  CAS  Google Scholar 

  • Ahad A, Raish M, Ahmad A, Al-Jenoobi FI, Al-Mohizea AM (2018c) Eprosartan mesylate loaded bilosomes as potential nano-carriers against diabetic nephropathy in streptozotocin-induced diabetic rats. Eur J Pharm Sci 111:409–417

    Article  CAS  Google Scholar 

  • Ahad A, Raish M, Al-Jenoobi FI, Al-Mohizea AM (2018d) Sorbitane Monostearate and Cholesterol based Niosomes for Oral Delivery of Telmisartan. Curr Drug Deliv 15:260–266

    Article  CAS  Google Scholar 

  • Auda SH, Fathalla D, Fetih G, El-Badry M, Shakeel F (2016) Niosomes as transdermal drug delivery system for celecoxib: in vitro and in vivo studies. Polym Bull 73:1229–1245

    Article  CAS  Google Scholar 

  • Carvalho SM, Mansur AA, Capanema NS et al (2018) Synthesis and in vitro assessment of anticancer hydrogels composed by carboxymethylcellulose-doxorubicin as potential transdermal delivery systems for treatment of skin cancer. J Mol Liq 266:425–440

    Article  CAS  Google Scholar 

  • Chen J, Hu W, Qu YQ (2013) Evaluation of the pharmacodynamics and pharmacokinetics of brucine following transdermal administration. Fitoterapia 86:193–201

    Article  CAS  Google Scholar 

  • Elsewedy HS, Dhubiab BEA, Mahdy MA, Elnahas HM (2020) Development, optimization, and evaluation of PEGylated brucine-loaded PLGA nanoparticles. Drug Del 27:1134–1146

    Article  CAS  Google Scholar 

  • Elsewedy HS, Al Dhubiab BE, Mahdy MA, Elnahas HM (2021) Brucine PEGylated Nanoemulsion: In vitro and In vivo Evaluation. Colloids Surf, A Physicochem Eng Asp 608:125618. https://doi.org/10.1016/j.colsurfa.2020.125618

    Article  CAS  Google Scholar 

  • Garcia EJ, Oldoni TL, Alencar SM, Reis A, Loguercio AD, Grande RH (2012) Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth. Braz Dent J 23:22–27

    Article  Google Scholar 

  • Guo R, Wang T, Zhou G et al (2018) Botany, Phytochemistry, Pharmacology and Toxicity of Strychnos nux-vomica L.: A Review Am J Chin Med 46:1–23.

  • Gupta DK, Aqil M, Ahad A et al (2020) Tailoring of berberine loaded transniosomes for the management of skin cancer in mice. J Drug Deliv Sci Technol 60:102051. https://doi.org/10.1016/j.jddst.2020.102051

    Article  CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: Properties, applications and toxicities. Arab J Chem 12:908–931

    Article  CAS  Google Scholar 

  • Li S, Wang XP (2017) In vitro and in vivo evaluation of novel NGR-modified liposomes containing brucine. Int J Nanomedicine 12:5797–5804

    Article  CAS  Google Scholar 

  • Li P, Zhang M, Ma W, Sun X, Jin F (2012) Effects of brucine on vascular endothelial growth factor expression and microvessel density in a nude mouse model of bone metastasis due to breast cancer. Chin J Integr Med 18:605–609

    Article  Google Scholar 

  • Li M, Li P, Zhang M, Ma F (2018) Brucine suppresses breast cancer metastasis via inhibiting epithelial mesenchymal transition and matrix metalloproteinases expressions. Chin J Integr Med 24:40–46

    Article  CAS  Google Scholar 

  • Lu L, Huang R, Wu Y et al (2020) Brucine: A Review of Phytochemistry, Pharmacology, and Toxicology. Front Pharmacol 11:377. https://doi.org/10.3389/fphar.2020.00377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mensor LL, Menezes FS, Leitao GG et al (2001) Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 15:127–130

    Article  CAS  Google Scholar 

  • Mohammed H, Urszula D (2014) PLGA biodegradable nanoparticles containing perphenazine or chlorpromazine hydrochloride: effect of formulation and release. Int J Mol Sci 15:23909–23923

    Article  Google Scholar 

  • Mohammed N, Rejinold NS, Mangalathillam S et al (2013) Fluconazole loaded chitin nanogels as a topical ocular drug delivery agent for corneal fungal infections. J Biomed Nanotechnol 9:1521–1531

    Article  CAS  Google Scholar 

  • Mohamed F, Nicolas A, Justine W et al (2019) An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol 71:1185–1198

    Article  Google Scholar 

  • Moolakkadath T, Aqil M, Ahad A et al (2018) Development of transethosomes formulation for dermal fisetin delivery: Box-Behnken design, optimization, in vitro skin penetration, vesicles-skin interaction and dermatokinetic studies. Artif Cells Nanomed Biotechnol 46:755–765

    Article  CAS  Google Scholar 

  • Moolakkadath T, Aqil M, Ahad A et al (2019) Fisetin loaded binary ethosomes for management of skin cancer by dermal application on UV exposed Rat. Int J Pharm 560:78–91

    Article  CAS  Google Scholar 

  • Moolakkadath T, Aqil M, Ahad A et al (2020) Preparation and optimization of fisetin loaded glycerol based soft nanovesicles by Box-Behnken design. Int J Pharm 578:119125. https://doi.org/10.1016/j.ijpharm.2020.119125

    Article  CAS  PubMed  Google Scholar 

  • Mura S, Manconi M, Sinico C, Valenti D, Fadda AM (2009) Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil. Int J Pharm 380:72–79

    Article  CAS  Google Scholar 

  • Negi P, Singh B, Sharma G, Beg S, Katare OP (2015) Biocompatible lidocaine and prilocaine loaded-nanoemulsion system for enhanced percutaneous absorption: QbD-based optimisation, dermatokinetics and in vivo evaluation. J Microencapsul 32:419–431

    Article  CAS  Google Scholar 

  • Qin XQ, Yuan Y, Liu CS et al (2007) Preparation of liposomal brucine and its pharmaceutical/pharmacodynamic characterization. Acta Pharmacol Sin 28:1851–1858

    Article  CAS  Google Scholar 

  • Qin J, Pei-Hao Y, Qi L et al (2012) Anti-tumor effects of brucine immuno-nanoparticles on hepatocellular carcinoma. Int J Nanomed 7:369–379

    Article  CAS  Google Scholar 

  • Qin J, Yang L, Sheng X et al (2018) Antitumor effects of brucine immuno-nanoparticles on hepatocellular carcinoma in vivo. Oncol Lett 15:6137–6146

    PubMed  PubMed Central  Google Scholar 

  • Rai S, Pandey V, Rai G (2017) Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: the state of the art. Nano Rev Exp 8:1325708. https://doi.org/10.1080/20022727.2017.1325708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saraswati S, Alhaider AA, Agrawal SS (2013) Anticarcinogenic effect of brucine in diethylnitrosamine initiated and phenobarbital-promoted hepatocarcinogenesis in rats. Chem Biol Interact 206:214–221

    Article  CAS  Google Scholar 

  • Shah H, Nair AB, Shah J, Bharadia P, Al-Dhubiab BE (2019) Proniosomal gel for transdermal delivery of lornoxicam: optimization using factorial design and in vivo evaluation in rats. Daru 27:59–70

    Article  CAS  Google Scholar 

  • Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154:123–140

    Article  CAS  Google Scholar 

  • Shi L, Li Y, Fei L, Lv S (2017) Herbal Textual Research on Strychnos nuxvomica. Res Pract Chin Medicines 31:6–10

    Google Scholar 

  • Shi X, Zhu M, Kang Y et al (2018) Wnt/bcatenin signaling pathway is involved in regulating the migration by an effective natural compound brucine in LoVo cells. Phytomedicine 46:85–92

    Article  CAS  Google Scholar 

  • Shu G, Mi X, Cai J et al (2013) Brucine, an alkaloid from seeds of Strychnos nux-vomica Linn., represses hepatocellular carcinoma cell migration and metastasis: the role of hypoxia inducible factor 1 pathway. Toxicol Lett 222:91–101

    Article  CAS  Google Scholar 

  • Wu Y, Chen J, Fang Y, Dong J (2016) In vitro transdermal permeation and penetration properties for transfersomes of brucine. China J Chin Materia Med 41:3009–3015

    Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (RG-11-166-38). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadab Md.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhakamy, N.A., Aldawsari, H.M., Ali, J. et al. Brucine-loaded transliposomes nanogel for topical delivery in skin cancer: statistical optimization, in vitro and dermatokinetic evaluation. 3 Biotech 11, 288 (2021). https://doi.org/10.1007/s13205-021-02841-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02841-5

Keywords

Navigation