Skip to main content

Advertisement

Log in

Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Mangrove forests occurring at the interface of terrestrial and marine ecosystems represent a rich biological diversity of plants, animals and microorganisms. Microbes, being an important component of the mangrove environment, not only play a very critical role in creating and maintaining this biosphere but also serve as a source of biotechnologically valuable and important products. By participating in various steps of decomposition and mineralization of leaf litter, microbes make an essential contribution to the productivity of the mangrove ecosystem. They able to recycle nutrients, produce and consume gases that affect global climate, destroy pollutants, treat anthropogenic wastes and can also be used for biological control of plant and animal pests. Microorganisms from mangrove environments are a major source of antimicrobial agents and also produce a wide range of important medicinal compounds, including enzymes, antitumor agents, insecticides, vitamins, immunosuppressants, and immune modulators. However, the phylogenetic and functional description of microbial diversity in mangrove ecosystems has not been addressed to the same extent as for other environments. Even though the mangrove ecosystem is very rich in microbial diversity, less than 5% of species have been described; in many cases neither their ecological role nor their application potential is known. Recently developed technologies in molecular biology and genetics offer great promise to explore the potential of microbial diversity. Hence, the present paper makes an attempt to review the microbial diversity in mangrove ecosystems and explore their potential applications in various fields such as agriculture, pharmaceutical, industrial, environmental and medical sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4

Similar content being viewed by others

References

  • Abdel–Wahab MAA (2005) Diversity of marine fungi from Egyptian Red Sea mangroves. Bot Mar 48:248–355

    Article  Google Scholar 

  • Alias SA, Kuthubutheen AJ, Jones EBG (1995) Frequency of occurrence of fungi on wood in Malaysian mangroves. Hydrobiologia 295:97–106

    Article  Google Scholar 

  • Alongi DM (1988) Bacterial productivity and microbial biomass in tropical mangrove sediments. Microb Ecol 15:59–79

    Article  Google Scholar 

  • Alongi DM, Boto KG, Robertson AI (1992) Nitrogen and Phosphorus cycles in tropical mangrove ecosystems. Washington DC: Am Geophys Univ 41:251–292

  • Alongi DM, Christoffersen P, Tirendi F (1993) The influence of forest type on microbial-nutrient relationships in tropical mangrove sediments. J Exp Mar Biol Ecol 171:201–223

    Article  Google Scholar 

  • Alongi DM, Sasekumar A, Tirendi F, Dixon P (1998) The influence of stand age on benthic decomposition and recycling of organic matter in managed mangrove forests of Malaysia. J Exp Mar Biol Ecol 225:197–218

    Article  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Ara I, Kudo T, Matsumoto A, Takahashi Y, Omura S (2007) Nonomuraea maheshkhaliensis sp. nov., a novel actinomycete isolated from mangrove rhizosphere mud. J Gen Appl Microbiol 53:159–166

    Google Scholar 

  • Armando CFD, Andreote FD, Dini-Andreote F, Lacava PT, Sá ALB, Melo IS et al (2009) Diversity and biotechnological potential of culturable bacteria from Brazilian mangrove sediment. World J Microbiol Biotechnol 25:1305–1311

    Google Scholar 

  • Bakonyi T, Derakhshifar I, Grabensteiner L, Nowotny N (2003) Development and evaluation of PCR assays for the detection of Paenibacillus larvae in honey samples. Comparisons with isolation and biochemical characterization. Appl Environ Microbiol 69:1504–1510

    Article  PubMed  CAS  Google Scholar 

  • Bano N, Nisa MU, Khan N, Saleem M, Harrison PJ, Ahmed SI, Azam F (1997) Significance of bacteria in the flux of organic matter in the tidal creeks of the mangrove ecosystem of the Indus River Delta, Pakistan. Mar Ecol Prog Ser 157:1–12

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum plant relationships: environmental and physiological advances. Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Benka-coker MO, Olumagin A (1995) Waste drilling fluid utilising microorganisms in a tropical mangrove swamp oilfield location. Bioresour Technol 53(3):211–215

    CAS  Google Scholar 

  • Borse BD (1988) Frequency of occurrence of marine fungi from Maharashtra coast, India. Indian J Mar Sci 17(2):165–167

    Google Scholar 

  • Brito EM, Guyoneaud R, Goñi-Urriza M, Ranchou- Peyruse A, Verbaere A, Crapez MAC (2006) Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol 157:752–762

    Article  PubMed  CAS  Google Scholar 

  • Cardellina JH (1986) Marine natural products as leads to new pharmaceutical and agrochemical agents. Pure Appl Chem 58:365–374

    Article  CAS  Google Scholar 

  • Chen GY, Lin YC, Wen L, Vrijmoed LLP, Jones EBG (1893) Two new metabolites of a marine endophytic fungus (No. 1893) from an estuarine mangrove on the South China Sea coast. Tetrahedron 59:4907–4909

    Article  CAS  Google Scholar 

  • Chen GY, Lin YC, Vrijmoed LLP, Fong WF (2006) A new isochroman from the marine endophytic fungus 1893#. Chem Nat Comp 42:138–141

    Article  CAS  Google Scholar 

  • Cheng ZS, Pan JH, Tang WC, Chen QJ, Lin YC (2009) Biodiversity and biotechnological potential of mangrove-associated fungi. J For Res 20(1):63–72

    Article  CAS  Google Scholar 

  • Cordeiro-Marino M, Braga MRA, Eston VR, Fujii MT, Yokoya NA (1992) Mangrove macro algal communities in Latin America. The state of the art and perspectives. In: Seeliger U (ed) Coastal plant communities of Latin America. Academic, San Diego, pp 51–64

    Google Scholar 

  • Cribb AB, Cribb JW (1995) Marine fungi from Queensland-1. Papers Univ Queensland. Dept Bot 3:78–107

    Google Scholar 

  • Cundell AM, Brown MS, Stanford R, Mitchell R (1979) Microbial degradation of Rhizophora mangle leaves immersed in the sea. Estuar Coast Mar Sci 9:281–286

    Article  CAS  Google Scholar 

  • D’Croz L, Del Rosario J, Holness R (1989) Degradation of red mangrove (Rhizophora mangle L.) leaves in the Bay of Panama. Rev Biol Trop 37:101–104

    Google Scholar 

  • D’Souza DT, Tiwari R, Sah AK, Raghukumar C (2006) Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzym Microb Technol 38:504–511

    Article  CAS  Google Scholar 

  • Dar SA, Kleerebezem R, Stams AJM, Kuenen JG, Muyzer G (2008) Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Appl Environ Microbiol 78:1045–1055

    CAS  Google Scholar 

  • Das S, Lyla PS, Khan SA (2006) Spatial variation of aerobic culturable heterotrophic bacterial population in sediment of the Continental slope of western Bay of Bengal. Indian J Mar Sci 36(1):51–58

    Google Scholar 

  • Denariaz G, Payne WJ, Gall JLE (1989) A halophilic denitrifier Bacillus halodnitrificans sp. nov. Int J Syst Bacteriol 39:145–151

    Article  CAS  Google Scholar 

  • Desai C, Pathak H, Madamwar D (2010) Advances in molecular and “omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresour Technol 101(6):1558–1569

    Article  PubMed  CAS  Google Scholar 

  • Dias ACF, Andreote FD, Dini-Andreote F, Lacava PT, Sa ALB, Melo IS, Azevedo JL, Araujo WL (2009) Diversity and biotechnological potential of culturable bacteria from Brazilian mangrove sediment. World J Microbiol Biotechnol 25(7):1305–1311

    Article  CAS  Google Scholar 

  • Dias ACF, Andreote FD, Rigonato J, Fiore MF, Melo IS, Araujo WL (2010) The bacterial diversity in Brazilian non disturbed mangrove sediment. Antonie Van Leeuwenhoek 98:541–555

    Article  PubMed  Google Scholar 

  • Eccleston GP, Brooks PR, Kurtböke DI (2008) The occurrence of bioactive micromonosporae in aquatic habitats of the Sunshine Coast in Australia. Mar Drugs 6:243–261

    Article  PubMed  CAS  Google Scholar 

  • Fathabad EG (2011) Biosurfactants in pharmaceutical industry. Am J Drug Discov Dev 1:58–69

    Article  Google Scholar 

  • Gadek PA (ed) (1998) Patch deaths in tropical Queensland rainforests: association and impact of Phytophthora cinnamoni and other soil borne pathogens. Cooperative Research Centre for Torpical Rain forest Ecology and Management, Technical Report, Cairns, 99 pp

  • Garrettson–Cornell L, Simpson J (1984) Three new marine Phytophthora species from New South Wales. Mycotaxon 19:453–470

    Google Scholar 

  • Gayathri S, Saravanan D, Radhakrishnan M, Balagurunathan R, Kathiresan K (2010) Bioprospecting potential of fast growing endophytic bacteria from leaves of mangrove and salt-marsh plant species. Indian J Biotechnol 9:397–402

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Gray JP, Herwig RP (1996) Phylogenetic analysis of the bacterial communities in marine sediments. Appl Environ Microbiol 62:4049–4059

    PubMed  CAS  Google Scholar 

  • Gulve RM, Deshmukh AM (2011) Enzymatic activity of actinomycetes isolated from marine sediments. Recent Res Sci Technol 3(5):80–83

    Google Scholar 

  • Gupta N, Das S, Basak UC (2007) Use of extracellular activity of bacteria isolated from Bhitarkanika mangrove ecosystem of Orissa cost. Malayasian J Microbiol 3(2):15–18

    Google Scholar 

  • Gupta N, Mishra S, Basak UC (2009a) Microbial population in phylosphere of mangroves grow in different salinity zones of Bhitarkanika (India). Acta Bot Malactina 34:1–5

    Google Scholar 

  • Gupta N, Mishra S, Basak UC (2009b) Diversity of Streptomyces in mangrove ecosystem of Bhitarkanika. Iranian J Microbiol 1(3):37–42

    Google Scholar 

  • Gupta N, Sahoo D, Basak UC (2010) Evaluation of in vitro solubilization potential of phosphate solubilising Streptomyces isolated from phyllosphere of Heritiera fomes (mangrove). Afr J Microbiol Res 4(3):136–142

    CAS  Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh LJ (1998) Effect of buffering on the P-solubilizing ability of microorganisms. World J Microbiol Biotechnol 14:669–673

    Article  CAS  Google Scholar 

  • Haight M (2005) Assessing the environmental burdens of anaerobic digestion in comparison to alternative options for managing the biodegradable fraction of municipal solid wastes. Water Sci Technol 52:553–559

    PubMed  CAS  Google Scholar 

  • Hesse PR (1962) Phosphorus fixation in mangrove swamp muds. Nature 193:295–296

    Article  CAS  Google Scholar 

  • Hicks BJ, Silvester WB (1985) Nitrogen fixation associated with the New Zealand mangrove Avicennia marina (Forsk) Vierh. Var. resinifera (Forst. F) Bakh. Appl Environ Microbiol 49:955–959

    PubMed  CAS  Google Scholar 

  • Holguin G, Guzman MA, Bashan Y (1992) Two new nitrogen fixing bacteria from the rhizosphere of mangrove trees: their isolation, identification and in vitro interaction with rhizosphere staphylococcus sp. FEMS Microbiol 101:207–216

    Article  CAS  Google Scholar 

  • Holguin G, Bashan Y, Mendoza-Salgado RA, Amador E, Toledo G, Vazquez P, Amador A (1999) La Microbiologia de los manglares. Bosques en la frontera entre el mar y la tierrra. Ciencia Desarrollo 144:26–35

    Google Scholar 

  • Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabitation of mangrove ecosystems: an overview. Biol Fertil Soil 33:265–278

    Article  CAS  Google Scholar 

  • Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw Biol 46:431–451

    Article  CAS  Google Scholar 

  • Hong K, Gao AH, Xie QY, Gao H, Zhuang L, Lin HP, Yu HP, Li J, Yao XC, Goodfellow M, Ruan JS (2009) Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs 7:24–44

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Lv J, Hu Y, Fang Z, Zhang K, Bao S (2008) Micromonospora rifamycinica sp. nov, a novel actinomycete from mangrove sediment. Int J Syst Evol Microbiol 58:17–20

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Feng X, Xiao Z, Liu L, Li H, Ma L, Lu Y, Ju J, She Z, Lin Y (2011) Azaphilones and p-terphenyls from the mangrove endophytic fungus Penicillium chermesinum (ZH4-E2) isolated from the South China Sea. J Nat Prod 74(5):997–1002

    Article  PubMed  CAS  Google Scholar 

  • Hyde KD (1990) A comparison of the intertribal mycota of five mangrove tree species. Asian Mar Biol 7:93–108

    Google Scholar 

  • Hyde KD (1996) Marine fungi. In: Grurinovic C, Mallett K (eds) Fungi of Australia, vol 1B. ABRS/CSIRO, Canberra, pp 39–64

    Google Scholar 

  • Hyde KD, Jones EBG, Leano E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of fungi in marine ecosystems. Biodiv Conserv 7:1147–1161

    Article  Google Scholar 

  • Isaka M, Suyarnsestakorn C, Tanticharoen M (2002) Aigialomycins A–E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. J Org Chem 67:1561–1566

    Article  PubMed  CAS  Google Scholar 

  • Jones EBG, Abdel–Wahab MA (2005) Marine fungi from the Bahamas Islands. Bot Mar 48:356–364

    Article  Google Scholar 

  • Joseph I, Paul Raj R (2007) Isolation and characterization of phytase producing Bacillus strains from mangrove ecosystem. J Mar Biol Assoc India 2:177–182

    Google Scholar 

  • Kathiresan K (2003) How do mangrove forests induce sedimentation. Rev Biol Trop 51:355–360

    PubMed  CAS  Google Scholar 

  • Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251

    Article  Google Scholar 

  • Kathiresan K, Qasim SZ (2005) Biodiversity of mangrove ecosystems. Hindustan, New Delhi, p 51

    Google Scholar 

  • Kathiresan K, Selvam MM (2006) Evaluation of beneficial bacteria from mangrove soil. Bot Mar 49(1):86–88

    Article  CAS  Google Scholar 

  • Ke L, Wang WQ, Wong TWY, Wong YS, Tam NFY (2003) Removal of pyrene from contaminated sediments by mangrove microcosms. Chemosphere 51:25–34

    Article  PubMed  CAS  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology. The higher fungi. Academic, New York

    Google Scholar 

  • Kothamasi D, Kothamasi S, Bhattacharyya A, Kuhad RC, Babu CR (2006) Arbuscular mycorrhizae and phosphate solubilising bacteria of the rhizosphere of the mangrove ecosystem of Great Nicobar Island, India. Biol Fertil Soils 42:358–361

    Article  Google Scholar 

  • Kristensen E, Holmer M, Bussarawit N (1991) Benthic metabolism and sulfate reduction in a south-east Asian mangrove swamp. Mar Ecol Prog Ser 73:93–103

    Article  CAS  Google Scholar 

  • Lageiro MM, Moura MJ, Reis A, Ferreira MJC (2007) Microbial proteases application in leather industry. J Biotechnol 131:239–240

    Article  Google Scholar 

  • Lakshmanaperumalsamy P (1987) Nitrogen fixing bacteria, Azotobacter sp. in aquatic sediment. Fish Technol Soc Fish Technol 24(2):126–128

    Google Scholar 

  • Laksmanaperumalsamy P, Chandramohan D, Natarajan R (1978) Antibacterial and antifungal activity of streptomycetes from Porto Novo coastal environment. Mar Biol 11:15–24

    Google Scholar 

  • Lee HL, Seleena P (1990) Effect of sodium chloride on the growth of several isolates of Bacillus thuringiensis Serotype H-14, isolated from mangrove swamp soil in Malaysia. Mosquito Borne Dis Bull 7(4):134–135

    Google Scholar 

  • Li X, Kondo R, Sakai K (2002) Biodegradation of sugarcane bagasse with marine fungus Phlebia sp. MG–60. J Wood Sci 48:159–162

    Google Scholar 

  • Li X, Kondo R, Sakai K (2003) Studies on hypersaline-tolerant white-rot fungi IV: effects of Mn and NH4on manganese peroxidase production and Roly R-478 decolorization by the marine isolate Phlebia sp.MG–60 under saline conditions. J Wood Sci 49:355–360

    Google Scholar 

  • Liang JB, Chen YQ, Lan CY, Tam FY, Zan QJ, Huang LN (2006) Recovery of novel bacterial diversity from mangrove sediment. Mar Biol 150:739–747

    Article  Google Scholar 

  • Lin YC, Zhou SN (2003) Marine microorganism and its metabolites. Chemical Industry, Beijing, pp 426–427

    Google Scholar 

  • Lin YC, Wu XY, Feng S, Jiang GC, Luo JH, Zhou SN, Vrijmoed LLP, Jones EBG, Krohn K, Steingröver K, Zsila F (2001) Five unique compounds: xyloketals from mangrove fungus Xylaria sp. from the South China Sea coast. J Org Chem 66:6252–6256

    Article  PubMed  CAS  Google Scholar 

  • Lin YC, Wang J, Wu XY, Zhou SN, Vrijmoed LLP, Jones EBG (2002a) A novel compound enniatin G from the mangrove fungus Halosarpheia sp. (strain 732) from the South China Sea. Aust J Chem 55:225–227

    Article  CAS  Google Scholar 

  • Lin YC, Wu XY, Deng ZJ, Wang J, Zhou SN, Vrijmoed LLP, Jones EBG (2002b) The metabolites of the mangrove fungus Verruculina enalia No. 2606 from a salt lake in the Bahamas. Phytochemistry 59:469–471

    Article  PubMed  CAS  Google Scholar 

  • Liu A, Wu X, Xu T (2007) Research advances in endophytic fungi of mangrove. Chin J Appl Ecol 18(4):912–918

    CAS  Google Scholar 

  • Loka Bharathi PA, Oak S, Chandramohan D (1991) Sulfate-reducing bacteria from mangrove swamps II: their ecology and physiology. Oceanol Acta 14:163–171

    Google Scholar 

  • Lyimo TJ, Pol A, Op den Camp HJ (2002) Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tanzania. Ambio 31:614–616

    PubMed  Google Scholar 

  • Lyimo TJ, Pol A, Jetten SMM, Op den Camp HJM (2008) Diversity of methanogenic archaea in a mangrove sediment and isolation of a new Methanococcoides strain. FEMS Microbiol Lett 291:247–253

    Article  CAS  Google Scholar 

  • Mann FD, Steinke TD (1992) Biological nitrogen fixation (acetylene reduction) associated with decomposing Avicennia marina leaves in the Beach wood Mangroove Nature Reserve. S Afr J Bot 58:533–536

    CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  PubMed  CAS  Google Scholar 

  • Maria GL, Sridhar KR (2002) Richness and diversity of filamentous fungi on woody litter of mangroves along the west coast of India. Curr Sci 83:1573–1580

    Google Scholar 

  • Maria GL, Sridha KR, Raviraja NS (2005) Antimicrobial and enzyme activity of mangrove fungi of south west coast of India. J Agric Technol 1:67–80

    Google Scholar 

  • Marty DG (1985) Description de quatre souches Methanogenes thermo tolerants isolee de sediments marins ou intertidaux. C R Acad Sci III 300:545–548

    Google Scholar 

  • Matondkar SGP, Mahtani S, Mavinkurve S (1981) Studies on mangrove swamps of Goa, Heterotrophic bacterial flora from mangrove swamps. Mahasagar Bull Natl Inst Oceanogr 14:325–327

    Google Scholar 

  • Maxwell GS (1968) Pathogenicity and salinity tolerance of Phytophthora sp. isolated from Avicennia resinifera (Forst F.)—some initial investigations. Tane 14:13–23

    Google Scholar 

  • Mishra, RR (2010) Microbial biodiversity in mangroves of Bhitarakanika, Orissa—a study on genotypic, phenotypic and proteomic characterisation of some predominant bacteria. PhD thesis submitted to North Orissa University, Orissa, India

  • Mishra RR, Prajapati S, Das J, Dangar TK, Das N, Thatoi HN (2011) Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere 84(9):1231–1237

    Article  PubMed  CAS  Google Scholar 

  • Mitra A, Santra SC, Mukherjee J (2008) Distribution of actinomycetes and antagonistic behaviour with the physico-chemical characteristics of the world’s largest tidal mangrove forest. Appl Microbiol Biotechnol 80:685–695

    Article  PubMed  CAS  Google Scholar 

  • Mobanraju R, Rajgopal BS, Daniels L, Natrajan R (1997) Isolation and characterisation of methanogenic bacteria from mangrove sediment. J Mar Biotechnol 5:147–152

    Google Scholar 

  • Mulligan CN (2009) Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci 14:372–378

    Article  CAS  Google Scholar 

  • Muyzer G (1999) DGGE/ TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    PubMed  CAS  Google Scholar 

  • Nakagiri A, Newell SY, Ito T, Tan TK, Pek CL (1996) Biodiversity and ecology of the Oomycetous fungus, Halophytophthora. DIWPA Series. Biodiversity and the Dynamics of Ecosystems 1:273–280

    Google Scholar 

  • Nedumaran T, Thillairajsekhar K, Perumal P (2008) Mangrove associated cyanobacteria at Pichavaram, Tamilnadu. Seaweeds Res Utiln 30:77–85

    Google Scholar 

  • Nedwell DB, Blackburn TH, Wiebe WJ (1994) Dynamic nature of the turnover of organic carbon, nitrogen and sulphur in the sediments of a Jamaican mangrove forest. Mar Ecol Prog Ser 110:223–231

    Article  CAS  Google Scholar 

  • Odum WE, Heald EJ (1972) Trophic analyses of an estuarine mangrove community. Bull Mar Sci 22:671–738

    Google Scholar 

  • Odum WE, Heald EJ (1975a) Mangrove forests and aquatic productivity. In: Hasler AD (ed) Coupling of land and water systems. Ecological studies series. Springer, Berlin, pp 129–136

    Chapter  Google Scholar 

  • Odum WE, Heald EJ (1975b) The detritus-based food web of an estuarine mangrove community. In: Ronin LT (ed) Estuarine research. Academic, New York, pp 265–286

    Google Scholar 

  • Oremland RS, Marsh LM, Polcin S (1982) Methane production and simultaneous sulfate reduction in anoxic salt marsh sediments. Nature 296:143–145

    Article  CAS  Google Scholar 

  • Pal AK, Purkayastha RP (1992) New Parasitic fungi from Indian mangrove. J Mycopathol Res 30(2):173–176

    Google Scholar 

  • Panchnadikar VV (1993) Studies of iron bacteria from mangrove ecosystem in Goa and Konkan. Int J Environ Stud 45(1):17–21

    Article  Google Scholar 

  • Pegg KG, Gillespie NC, Forsberg LI (1980) Phytophthora spp. associated with mangrove death in central coastal Queensland. Australas Plant Pathol 9:6–7

    Article  Google Scholar 

  • Pelegri SP, Twilley RR (1998) Heterotrophic nitrogen fixation (acetylene reduction) during leaf litter decomposition of two mangrove species from South Florida, USA. Marine Biol 131(1):53–61

    Article  CAS  Google Scholar 

  • Poch GK, Gloer JB (1989) Helicascolides A and B: new lactones from the marine fungus Helicascus kunaloanus. J Nat Prod 52:257–260

    Article  PubMed  CAS  Google Scholar 

  • Poch GK, Gloer JB (1991) Auranticins A and B: two depsidones from a mangrove isolate of the fungus Preussia aurantiaca. J Nat Prod 54:213–217

    Article  PubMed  CAS  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases form fungi: properties and Industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  PubMed  CAS  Google Scholar 

  • Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, Rujiravanit R (2008) Structural and physicochemical characterization of crude biosurfactants produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresource Technol 99:1589–1595

    Article  CAS  Google Scholar 

  • Prabhakaran NR, Gupta N, Krishnankutty M (1990) Fungal activity in Mangalvan—an estuarine mangrove ecosystem. In: Nair NB (ed) Proceedings of the National Seminar on Estuarine Management, Trivandrum. Academic, New York, pp 458–463

  • Raghukumar S, Sathe-Pathak V, Sharma S, Raghukumar C (1995) Thraustochytrid and fungal component of marine detritus. Field studies on decomposition of leaves of the mangrove Rhizophora apiculata. Aquat Microb Ecol 9:117–125

    Article  Google Scholar 

  • Raghukumar C, Muraleedharan U, Gaud VR, Mishra R (2004) Xylanases of marine fungi of potential use of bioleaching of paper pulp. J Ind Microbiol Biotechnol 31:433–441

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran S, Venugopalan VK (1987) Nitrogen fixation by blue green algae in porto Novo Marine environment. J Mar Biol Ass India 29(1–2):337–343

    Google Scholar 

  • Ramamurthy T, Raju RM, Natarajan R (1990) Distribution and ecology of methanogenic bacteria in mangrove sediments of Pichavaram, east coast of India. Indian J Mar Sci 19:269–273

    CAS  Google Scholar 

  • Ramanathan AL, Singh G, Majumdar J, Samal AC, Chauhan R, Ranjan RK, Rajkumar K, Santra SC (2008) A study of microbial diversity and its interaction with nutrients in the sediments of Sundarban mangroves. Indian J Mar Sci 37(2):159–165

    CAS  Google Scholar 

  • Ramsay MA, Swannell RPJ, Shipton WA, Duke NC, Hill RT (2000) Effect of bioremediation community in oiled mangrove sediments. Mar Pollut Bull 41:413–419

    Article  CAS  Google Scholar 

  • Ravikumar S (1995) Nitrogen fixing Azotobacters from the mangrove habitat and their utility as biofertilizers. PhD thesis, Annamalai University, India

  • Ravikumar DR, Vittal BPR (1996) Fungal diversity on decomposing biomass of mangrove plant Rhizophora in Pichagram estuary, east coast of India. Indian J Mar Sci 21(1):64–66

    Google Scholar 

  • Ravikumar S, Fredimoses M, Gokulakrishnan R (2011a) Biodiversity of actinomycetes in Manakkudi mangrove ecosystem, Southwest coast of India. Ann Biol Res 2(1):76–82

    Google Scholar 

  • Ravikumar S, Inbaneson SJ, Uthiraselvam M (2011b) Priya SR2, Ramu A, Banerjee MB (2010) Diversity of endophytic actinomycetes from Karangkadu mangrove ecosystem and its antibacterial potential against bacterial pathogens. J Pharm Res 4(1):294–296

    Google Scholar 

  • Rivera-Monroy VH, Day WJ, Twilley RR, Vera-Herrera F, Coronado-Molina C (1995a) Flux of nitrogen and sediment in a fringe mangrove forest in Terminos lagoon, Mexico. Estuar Coast Shelf Sci 40:139–160

    Article  CAS  Google Scholar 

  • Rivera-Monroy VH, Twilley RR, Boustany RG, Day WJ, Vera-Herrera F, Ramirez MC (1995b) Direct denitrification in mangrove sediments in Términos Lagoon, Mexico. Mar Ecol 126:97–109

    Article  Google Scholar 

  • Roy S, Hens D, Biswas D, Biswas D, Kumar R (2002) Survey of petroleum—degrading bacteria in coastal waters of Sunderban biosphere reserve. World J Microbiol Biotechnol 18:575–581

    Article  CAS  Google Scholar 

  • Sabu A (2003) Sources, properties and applications of microbial therapeutic enzymes. Ind J Biotechnol 2(3):334–341

    CAS  Google Scholar 

  • Sadaba RB, Vrijmoed LLP, Jones EBG, Hodgkiss IJ (1995) Observations on vertical distribution of fungi associated with standing senescent Acanthus ilicifolius stems at Mai Po mangrove, Hong Kong. Hydrobiologia 295:119–126

    Article  Google Scholar 

  • Saho K, Dhal NK (2009) Potential microbial diversity in mangrove ecosystem: a review. Indian J Mar Sci 38(2):249–256

    Google Scholar 

  • Sahu MK, Sivakumar K, Kannan L (2005) Isolation of actinomycetes from different samples of the Vellar estuary, southeast coast of India. Pollut Res 24:45–48

    Google Scholar 

  • Sahu MK, Sivakumar K, Thangaradjou T, Kannan L (2007) Phosphate solubilizing actinomycetes in the estuarine environment: an inventory. J Environ Biol 28:795–798

    Google Scholar 

  • Saimmai A, Sobhon V, Maneerat S (2011) Production of biosurfactants from a new and promising strain of Leucobacter komagatae 183. Ann Microbiol 62(1):391–402

    Article  CAS  Google Scholar 

  • Santhi VS, Jebakumar SRD (2011) Phylogenetic analysis and antimicrobial activities of Streptomyces isolates from mangrove sediment. J Basic Microbiol 51:71–79

    Article  CAS  Google Scholar 

  • Santos HF, Cury JC, Carmo FL, Santos AL, Tiedje J, Elsas JD, Rosado SA, Peyote RS (2011) Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PLoS One 6(3):e16943

    Article  PubMed  CAS  Google Scholar 

  • Sarma VV, Hyde KD (2001) A review on frequently occurring fungi in mangrove. Fung Divers 8:1–34

    Article  Google Scholar 

  • Saxena D, Loka-Bharathi PA, Chandramohan D (1988) Sulfate reducing bacteria from mangrove swamps of Goa, central west coast of India. Indian J Mar Sci 17:153–157

    Google Scholar 

  • Sen N, Naskar K (2003) Algal flora of Sundarbans Mangal. Daya, New Delhi

    Google Scholar 

  • Sengupta A, Chaudhuri S (2002) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169–174

    Article  PubMed  Google Scholar 

  • Sengupta A, Choudhury S (1990) Halotolerant Rhizobium Strains from mangrove swamps of the Gangas River Delta. Indian J Microbiol 30(4):483–484

    Google Scholar 

  • Sengupta A, Choudhury S (1991) Ecology of Heterotrophic dinitrogen fixation in the rhizosphere of mangrove plant community at the Ganges river estuary in India. Oecologia 87:560–564

    Article  Google Scholar 

  • Shanmugam S, Mody KH (2000) Heparonid active sulphated polysaccharides from marine algae as potential blood coagulant agents. Curr Sci 79:1672–1683

    CAS  Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanova L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H (2007) Fungal diversity in aquatic habitats. Biodivers Conserv 16:49–67

    Article  Google Scholar 

  • Sherman RE, Fahey TJ, Howarth RW (1998) Soil-plant interactions in a neotropical mangrove forest: iron, phosphorus and sulfur dynamics. Oecologia 115:553–563

    Article  Google Scholar 

  • Shoreit AAM, EL- Kady IA, Sayed WF (1994) Isolation and identification of purple non sulphur bacteria of mangal and non-mangal vegetation of red sea coast, Egypt. Limnologica 24:177–183

    Google Scholar 

  • Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    Article  PubMed  CAS  Google Scholar 

  • Sivakumar K (2001) Actinomycetes of an Indian mangrove (Pichavaram). Environment. PhD thesis, Annamalai University

  • Sivakumar K, Sahu MK, Kathiresan K (2005) An antibiotic producing marine Streptomyces from the Pichavaram mangrove environment. Journal of the Annamalai University, Part-B XLI:9–18

    Google Scholar 

  • Sivakumar K, Sahu MK, Thangaradjou T, Kannan L (2007) Research on marine Actinobacteria in India. Ind J Microbiol 47:186–196

    Article  CAS  Google Scholar 

  • Sivaramakrishean S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A (2006) a-Amylases from microbial sources–an overview on recent developments. Food Technol Biotechnol 44:173–184

    Google Scholar 

  • Song XH, Liu XH, Lin YC (2004) Metabolites of mangrove fungus No. K23 and interaction of carboline with DNA. J Trop Oceangr 23(3):66–71.

    Google Scholar 

  • Srivastava R, Kulshreshtha DK (1989) Bioactive polysaccharides from plants. Phytochemistry 28:2877–2883

    Google Scholar 

  • Stanley J (2002) Biodiversity of Microbial life. Wiley-Liss, New York

  • Steinbüchel A, Fuchtenbusch B (1998) Bacteria and other biological systems for polyester production. Trends Biotechnol 16:419–427

    Article  PubMed  Google Scholar 

  • Steinke TD, Barnabas AD, Somaru R (1990) Structural changes and associated microbial activity accompanying decomposition of mangrove leaves in Mgeni Estuary. S Afr J Bot 56:39–48

    Google Scholar 

  • Sudha V (1981) Studies (a) on halophilic bacteria associated with mangrove sediment and a biovalve mollusc Anadara rhombea (Born) (Arcidae) and (b) on l-asparaginase (Anti-Leukamic agent) from an extremely halophilic bacterium. PhD Thesis. Annamalai University, Parangipettai, India

  • Sundararaj V, Dhevendran K, Chandramohan D, Krishnamurthy K (1974) Bacteria and primary production. Indian J Mar Sci 3:139–141

    Google Scholar 

  • Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Microbiology 44:1003–1006

    CAS  Google Scholar 

  • Tabao NC, Moasalud RG (2010) Characterisation and identification of high cellulose-producing bacterial strains from Philippine mangroves. Philipp J System Biol 4:13–20

    Google Scholar 

  • Taketani GR, Yoshiura AC, Dias FCA, Andreote DF, Tsai MS (2010) Diversity and identification of methanogenic archaea and sulphate-reducing bacteria in sediments from a pristine tropical mangrove. Antonie van Leeuwenhoek 97:401–411

    Article  PubMed  CAS  Google Scholar 

  • Tao L, Zhang JY, Liang YJ, Chen LM, Zhen LC, Wang F, Mi Y, She ZG, To KKW, Lin YC, Fu LW (2010) Anticancer effect and structure-activity analysis of marine products isolated from metabolites of mangrove fungi in the South China Sea. Mar Drugs 8:1094–1105

    Article  PubMed  CAS  Google Scholar 

  • Tasi-Li-Yu, Olson BH (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol 57:1070–1074

  • Taylor LE, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RM (2006) Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40 T. J Bacteriol 188:3849–3861

    Article  PubMed  CAS  Google Scholar 

  • Thatoi HN, Biswal AK (2008) Mangroves of Orissa coast: floral diversity and conservation status. Special habitats and threatened plants of India. ENVIS Wild Life And Protected Area 11(1):201–207

    Google Scholar 

  • Toledo G, Bashan Y, Soeldner A (1995) Cyanobacteria and black Mangrooves in North Western Mexico. Colonization and diurnal and seasonal nitrogen fixation on aerial roots. Can J Microbiol 41:999–1011

    Article  CAS  Google Scholar 

  • Urakawa H, Kita-Tsukamoto K, Ohwada K (1999) Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology 145:3305–3315

    PubMed  CAS  Google Scholar 

  • Vassileva M, Azcon R, Barea Miguel J, Vassilev N (1998) Application of an encapsulated filamentous fungus in solubilisation of inorganic phosphate. J Biotechnol 63(1):67–72

    Google Scholar 

  • Vazquez P, Holguin G, Puerte ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubillising micro organisms associated with the rhizosphere of mangroves in a semiarid Coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Venkateswara Sarma V, Hyde KD, Vittal BPR (2001) Frequency of occurrence of mangrove fungi from the east coast of India. Hydobiologia 455:41–53

    Article  Google Scholar 

  • Venkateswaran K, Natarajan R (1983) Seasonal distribution of inorganic phosphate solubilising bacteria and phosphatase producing bacteria in Porto Novo waters. Indian J Mar Sci 12(4):213–217

    Google Scholar 

  • Ventosa A, Nieto JJ (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Technol 11:85–94

    Article  CAS  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic bacteria. Microbiol Mol Biol Rev 62:504–544

    PubMed  CAS  Google Scholar 

  • Venugopal M, Saramma AV (2006) Characterization of alkaline protease from Vibrio fluvialis strain VM10 isolated from a mangrove sediment sample and its application as a laundry detergent additive. Process Biochem 41:1239–1243

    Article  CAS  Google Scholar 

  • Vethanayagam RR (1991) Purple photosynthetic bacteria from a tropical mangrove environment. Mar Biol 110:161–163

    Article  Google Scholar 

  • Vethanayagam RR, Krishnamurthy K (1995) Studies on anoxygenic photosynthetic bacterium Rhodopseudomonas spp. from the tropical mangrove environment. Ind J Mar Sci 24:19–23

    CAS  Google Scholar 

  • Vrijmoed LLP, Jones EBG, Hyde KD (1991) Observations on subtropical mangrove fungi in the Pearl River Estuary. Acta Sci Nat 33(1):78–85

    Google Scholar 

  • Wang GW, Li HY, Sun WB (2003) Primary study on arbuscular mycorrhizas of mangrove inQinzhou Bay. Guihaia 23(5):445–449

    Google Scholar 

  • Wiwin R (2010) Identification of Streptomyces sp-MWS1 producing antibacterial compounds. Indonesian J Trop Infect Dis 1(2):80–85

    Google Scholar 

  • Wu RY (1993) Studies on the microbial ecology of the Tansui Estuary. Bot Bull Acad Sin 34:13–30

    Google Scholar 

  • Xiao YT, Zheng ZH, Huang YJ, Xu QY, Su WJ, Song SY (2005) Nematicidal and brine shrimp lethality of secondary metabolites from marine-derived fungi. Journal of Xiamen University (Nature Science) 44(6):847–850

    Google Scholar 

  • Xie XC, Mei WL, Zhao YX, Hong K, Dai HF (2006) A new degraded sesquiterpene from marine actinomycete Streptomyces sp. 0616208. Chin Chem Lett 17:1463–1465

    CAS  Google Scholar 

  • Xu MJ, Gessner G, Groth I, Lange C, Christner A, Bruhn T, Deng ZW, Li X, Heinemann SH, Grabley S, Bringmann G, Sattler I, Lin WH (2007) Shearing D–K, new indole triterpenoids from an endophytic Penicillium sp. (strain HKI0459) with blocking activity on large-conductance calcium-activated potassium channels. Tetrahedron 63:435–444

    Article  CAS  Google Scholar 

  • Yakimov MM, Abraham WR, Meyer H, Laura G, Golyshin PN (1999) Structural characterisation of lichenycin. A component by fast atom bombardment tandem mass spectrometry. Biochem Biophys Acta 1438:230–280

    Google Scholar 

  • You JL, Mao W, Zhou SN, Wang J, Lin YC, Wu SY (2006) Fermentation conditions and characterization of endophytic fungus #732 producing novel enniatin G from South China Sea. Act Sci Nat 45(4):75–78

    CAS  Google Scholar 

  • Yu KS, Wong AH, Yau KW, Wong YS, Tam NF (2005) Natural attenuation, bio stimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51:1071–1077

    Article  PubMed  CAS  Google Scholar 

  • Zahran HH, Ahmad MS, Afkar EA (1995) Isolation and characterization of nitrogen-fixing moderate halophilic bacteria from saline soils of Egypt. J Basic Microbiol 35:269–275

    Article  Google Scholar 

  • Zhang YHP, Lynd LR (2004) Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum. Appl Environ Microbiol 70:1563–1569

    Article  PubMed  CAS  Google Scholar 

  • Zuberr DA, Silver WS (1978) Biological dinitrogen fixation (acetylene reduction) associated with florida mangroves. Appl Environ Microbiol 35:567–575

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hrudayanath Thatoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thatoi, H., Behera, B.C., Mishra, R.R. et al. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Ann Microbiol 63, 1–19 (2013). https://doi.org/10.1007/s13213-012-0442-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0442-7

Keywords

Navigation