Skip to main content
Log in

Chondrocyte 3D-culture in RGD-modified crosslinked hydrogel with temperature-controllable modulus

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Based on the thermosensitivity of Pluronic® F127 and the cytointeractability of Arg-Gly-Asp (RGD) sequences, RGD-modified F127 dimethacrylate (FM-RGD) hydrogel was investigated as a 3-dimensional culture matrix for chondrocytes. Chondrocytes were encapsulated in the hydrogel by radical copolymerization of FM-RGD and FM in the presence of cells. The FM-RGD hydrogel modulus could be modulated by temperature variation from 15 °C (1,300 Pa) to the culture temperature of 37 °C (8,900 Pa), at which the hydrogel provided a condrocyte-compatible microenvironment. Compared with the hydrogel prepared from F127 dimethacrylate (FM) without RGD, the RGD-modified hydrogel produced significant (p<0.01) improvements in cell proliferation, DNA production, and viability while allowing the chondrocytes to maintain their original spherical phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, Adv. Mater., 21, 3307 (2009).

    Article  CAS  Google Scholar 

  2. A. Atala, Curr. Opin. Biotechnol., 20, 575 (2009).

    Article  CAS  Google Scholar 

  3. T. Dvir, B. P. Timko, D. S. Kohane, and R. Langer, Nat. Nanotechnol., 6, 13 (2011).

    Article  CAS  Google Scholar 

  4. R. C. Dutta and A. K. Dutta, Biotechnol. Adv., 27, 334 (2009).

    Article  CAS  Google Scholar 

  5. M. W. Tibbitt and K. S. Anseth, Biotechnol. Bioeng., 103, 655 (2009).

    Article  CAS  Google Scholar 

  6. J. Zhu, Biomaterials, 31, 4639 (2010).

    Article  CAS  Google Scholar 

  7. R. H. Schmedlen, K. S. Masters, and J. L. West, Biomaterials, 23, 4325 (2002).

    Article  CAS  Google Scholar 

  8. K. Y. Lee and D. J. Mooney, Chem. Rev., 101, 1869 (2001).

    Article  CAS  Google Scholar 

  9. U. Hersel, C. Dahmen, and H. Kessler, Biomaterials, 24, 4385 (2003).

    Article  CAS  Google Scholar 

  10. D. L. Hern and J. A. Hubbell, J. Biomed. Mater. Res., 39, 266 (1998).

    Article  CAS  Google Scholar 

  11. S. P. Massia and J. A. Hubbell, J. Cell Biol., 114, 1089 (1991).

    Article  CAS  Google Scholar 

  12. H. Shin, S. Jo, and A. G. Mikos, Biomaterials, 24, 4353 (2003).

    Article  CAS  Google Scholar 

  13. D. S. W. Benoit, M. P. Schwartz, A. R. Durney, and K. S. Anseth, Nat. Mater., 10, 816 (2008).

    Article  Google Scholar 

  14. A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Cell, 126, 677 (2006).

    Article  CAS  Google Scholar 

  15. M. M. Stevens and J. H. George, Science, 310, 1135 (2005).

    Article  CAS  Google Scholar 

  16. Y. S. Pek, A. C. A. Wan, and J. Y. Yang, Biomaterials, 31, 385 (2009).

    Article  Google Scholar 

  17. B. G. Choi, M. H. Park, S. H. Cho, M. K. Joo, H. J. Oh, E. H. Kim, K. Park, D. K. Han, and B. Jeong, Soft Matter, 7, 456 (2011).

    Article  CAS  Google Scholar 

  18. A. M. Kloxin, A. M. Kasko, C. N. Salinas, and K. S. Anseth, Science, 324, 59 (2009).

    Article  CAS  Google Scholar 

  19. H. Lee and T. G. Park, J. Biomed. Mater. Res. A, 88, 797 (2009).

    Google Scholar 

  20. M. K. Joo, M. H. Park, B. G. Choi, and B. Jeong, J. Mater. Chem., 19, 5891 (2009).

    Article  CAS  Google Scholar 

  21. S. A. Robb, B. H. Lee, R. McLemore, and B. L. Vernon, Biomacromolecules, 8, 2294 (2007).

    Article  CAS  Google Scholar 

  22. B. G. Choi, S. H. Cho, H. Lee, M. H. Cha, K. Park, B. Jeong, and D. K. Han, Macromolecules, 44, 2269 (2011).

    Article  CAS  Google Scholar 

  23. M. H. Cha, J. Choi, B. G. Choi, K. Park, I. H. Kim, B. Jeong, and D. K. Han, J. Colloid Interface Sci., 360, 78 (2011).

    Article  CAS  Google Scholar 

  24. K. Mortensen and S. Perdersen, Macromolecules, 26, 805 (1993).

    Article  CAS  Google Scholar 

  25. M. Malmsten and B. Lindman, Macromolecules, 25, 5446 (1992).

    Article  CAS  Google Scholar 

  26. B. G. Choi, M. H. Park, S. H. Cho, M. K. Joo, H. J. Oh, E. H. Kim, K. Park, D. K. Han, and B. Jeong, Biomaterials, 31, 9266 (2010).

    Article  CAS  Google Scholar 

  27. K. Mark, V. Gauss, H. Mark, and P. Muller, Nature, 267, 531 (1977).

    Article  Google Scholar 

  28. C. Chung, I. E. Erickson, R. L. Mauck, and J. A. Burdick, Tissue Eng. Part A, 14, 1121 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byeongmoon Jeong or Dong Keun Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Choi, B.G., Moon, H.J. et al. Chondrocyte 3D-culture in RGD-modified crosslinked hydrogel with temperature-controllable modulus. Macromol. Res. 20, 106–111 (2012). https://doi.org/10.1007/s13233-012-0074-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0074-6

Keywords

Navigation