Skip to main content
Log in

Effect of styrene-butadiene rubber with different macrostructures and functional groups on the dispersion of silica in the compounds

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this study, the effects of high vinyl solution styrene-butadiene rubber (SSBR) containing different macrostructures and chain-end functional groups were investigated with respect to the dispersion of silica in the compounds. The microstructures and functional groups of three polymers were analyzed by using 1H nuclear magnetic resonance (NMR). According to the 1H NMR analysis, the star-shaped SSBR-E has a relatively higher numbers of ethoxy group in the polymer chain. All compounds showed good silica dispersion based on transmission electron microscopy (TEM) observation. According to analysis of the Payne effect, longer mixing times showed better dispersion of silica in the rubber compounds, and functional group differences in the SSBR also had an effect on the degree of silica dispersion that led to a decrease in storage modulus. In particular, the compound with star-shaped polymer containing ethoxy silyl groups showed the lowest storage modulus due to a higher number of functional groups compared to the other polymers. The abrasion resistance was closely related to the silica dispersion as well as the filler-rubber interaction. The abrasion loss decreased slightly when the mixing time was extended; however, this significantly decreased when the number of functional groups in the polymer chain was increased. Accordingly, the star-shaped polymer containing higher numbers of the functional group contributed to a better dispersion of silica in the compound. Mixing time was also considered as an important parameter to improve dispersion of silica and for reduction of silica flocculation in the rubber compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Byers, Rubber Chem. Technol., 75, 527 (2002).

    Article  CAS  Google Scholar 

  2. M. Castellanoa, L. Conzattia, G. Costab, L. Falquib, A. Turturroa, B. Valentia, and F. Negronic, Polymer, 46, 695 (2005).

    Article  Google Scholar 

  3. Y. P. Wu, Q. S. Zhao, S. H. Zhao, and L. Q. Zhang, J. Appl. Polym. Sci., 108, 112 (2008).

    Article  CAS  Google Scholar 

  4. S. S. Choi, C. Nah, S. G. Lee, and C. W. Joo, Polym. Int., 52, 23 (2003).

    Article  CAS  Google Scholar 

  5. C. J. Lin, W. L. Hergenrother, and A. S. Hilton, Rubber Chem. Technol., 75, 215 (2002).

    Article  CAS  Google Scholar 

  6. M. J. Wang, Rubber Chem. Technol., 71, 520 (1998).

    Article  CAS  Google Scholar 

  7. S. S. Choi and S. Park, Korea Polym. J., 9, 92 (2001).

    CAS  Google Scholar 

  8. P. Sae-oui, C. Sirisinha, U. Thepsuwan, and K. Hatthapanit, Polym. Test., 23, 871 (2004).

    Article  CAS  Google Scholar 

  9. A. K. Manna, P. P. De, and D. K. Tripathy, J. Appl. Polym. Sci., 84, 2171 (2002).

    Article  CAS  Google Scholar 

  10. H. Yan, G. Tian, K. Sun, and Y. Zhang, J. Appl. Polym. Sci., 43, 573 (2005).

    Article  CAS  Google Scholar 

  11. L. A. E. M. Reuvekamp, S. C. Debnath, J. W. Ten Brinke, P. J. Van Swaaij, and J. W. M. Noordermeer, Rubber Chem. Technol., 77, 34 (2004).

    Article  CAS  Google Scholar 

  12. H. D. Luginsland, J. Fröhlich, and A. Wehmeier, Rubber Chem. Technol., 75, 563 (2002).

    Article  CAS  Google Scholar 

  13. L. A. E. M. Reuvekamp, J. W. Ten Brinke, P. J. Van Swaaij, and J. W. M. Noordermeer, Rubber Chem. Technol., 75, 187 (2002).

    Article  CAS  Google Scholar 

  14. T. Sone and T. Yuasa, Nippon Gomu Kyokaishi, 83, 103 (2010).

    Article  CAS  Google Scholar 

  15. G. Mannebach, R. Morschhäuser, T. Scholl, and R. Stadler, E. P. Patent 1,165,641A1 (2002).

    Google Scholar 

  16. J. L. Cabioch and G. Labauze, E.P. Patent 0,778,311A1 (1997).

    Google Scholar 

  17. T. Scholl, U. Eisele, J. Trimbach, and S. Kelbch, U.S. Patent 6,252,008 (2001).

    Google Scholar 

  18. T. Scholl and J. Trimbach, U.S. Patent 6,365,668 (2002).

    Google Scholar 

  19. T. Scholl, W. Obrecht, W. Braubach, E. Giebeler, M. Grün, A. Müller, and M. Graf, U.S. Patent 6,518,369 (2003).

    Google Scholar 

  20. H. Kondo and K. Morita, E.P. Patent 1113024 (1999).

    Google Scholar 

  21. M. L. Kerns and S. K. Henning, Rubber Chem. Technol., 75, 299 (2002).

    Article  CAS  Google Scholar 

  22. K. A. Blume, Kaut. Gummi Kunstst., 64, 38 (2011).

    Google Scholar 

  23. A. F. Halasa and W. Hsu, Polymer, 43, 7111 (2000).

    Article  Google Scholar 

  24. C. Robertson, C. Lin, R. Bogoslovov, M. Rackaitis, P. Sadhukhan, J. Quinn, and C. Roland, Rubber Chem. Technol., 84, 507 (2011).

    Article  CAS  Google Scholar 

  25. D. Derouet, S. Forgeard, and J. Brosee, Macromol. Chem. Phys., 199, 1835 (1998).

    Article  CAS  Google Scholar 

  26. D. Derouet, S. Forgeard, and J. Brosee, Macromol. Chem. Phys., 200, 10 (1999).

    Article  CAS  Google Scholar 

  27. A. Ansarifar, L. Wang, and R. Ellis, J. Appl. Polym. Sci., 106, 1135 (2007).

    Article  CAS  Google Scholar 

  28. A. Ahagon, Rubber Chem. Technol., 69, 742 (1996).

    Article  CAS  Google Scholar 

  29. S. S. Choi, Korea Polym. J., 8, 192 (2000).

    CAS  Google Scholar 

  30. A. R. Payne, J. Appl. Polym. Sci., 6, 57 (1962).

    Article  CAS  Google Scholar 

  31. C. G. Robertson, C. J. Lin, R. B. Bogoslovov, M. Rackaitis, P. Sadhukhan, J. D. Quinn, and C. M. Roland, Rubber Chem. Technol., 84, 507 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, B., Kim, K., Lee, H. et al. Effect of styrene-butadiene rubber with different macrostructures and functional groups on the dispersion of silica in the compounds. Macromol. Res. 23, 466–473 (2015). https://doi.org/10.1007/s13233-015-3055-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3055-8

Keywords

Navigation