Skip to main content
Log in

Evaluation of genotoxicity and oxidative stress of aluminium oxide nanoparticles and its bulk form in Allium cepa

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

In the present study, we examined the effects of aluminium oxide nanoparticles (Al2O3 NPs) and bulk aluminium oxide (Al2O3) on Allium cepa in terms of genotoxicity and oxidative stress responses under in planta conditions. The concentrations ranged from 1.25 to 5 µM for NP and its bulk form. Results from this investigation indicated steady rise in chromosome aberrations, micronuclei and DNA strand breaks with increase in concentration of the NPs, effects of Al2O3 NPs being significantly higher than those treated with bulk Al2O3. The divisional frequency was affected by the NP treatment. Oxidative damage such as lipid peroxidation and cell death to Allium under Al2O3 NPs treatments was greater than that observed in bulk Al2O3. A significant increase in activity of guiacol peroxidase was observed in accordance with the depletion in catalase activity in both Al2O3 NPs and bulk Al2O3 treated plants as compared to control. In conclusion, the present study indicated that Al2O3 NPs treatment exerted higher genotoxicity and oxidative stress responses on A. cepa than bulk Al2O3 under in planta conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Al2O3 NPs:

Aluminium oxide nanoparticles

CA:

Chromosome aberrations

MN:

Micro nucleus

MI:

Mitotic index

GPOD:

Guiacol peroxidise

CAT:

Catalase

IPCS, WHO:

International Programme on Chemical Safety, World Health Organisation

UNEP:

United Nations Environment Programme

TTC:

2, 3, 5-Triphenyl-2H- tetrazolium chloride

NaOH:

Sodium hydroxide

NMPA:

Normal melting point agarose

LMPA:

Low melting point agarose

EDTA:

Di-sodium salt of ethylene diamine tetra acetic acid

EtBr:

Ethidium bromide

DLS:

Dynamic light scattering

ZP:

Zeta potential

PDI:

Poly dispersity index

LPO:

Lipid peroxidation

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

SD:

Standard deviation

ANOVA:

One-way analysis of variance

References

  1. Achary VM, Jena S, Panda KK, Panda BB. Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicol Environ Saf. 2008;70:300–10.

    Article  CAS  PubMed  Google Scholar 

  2. Achary VM, Parinandi LN, Panda BB. Calcium channel blockers protect against aluminium- induced DNA damage and block adaptive response to genotoxic stress in plant cells. Mutat Res. 2013;751:130–8.

    Article  CAS  PubMed  Google Scholar 

  3. Aebi H. Catalase in vitro. In: Packer L, editor. Methods in enzymology, vol. 105. New York: Academic Press Inc; 1984. p. 121–6.

    Google Scholar 

  4. Boscolo PR, Menossi M, Jorge RA. Aluminum-induced oxidative stress in maize. Phytochemistry. 2003;62:181–9.

    Article  CAS  PubMed  Google Scholar 

  5. Burklew CE, Ashlock J, Winfrey WB, Zhang B. Effects of aluminium oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PloS One. 2012;7:e34783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cabrera GL, Rodriguez DM. Genotoxicity of soil from farmland irrigated with wastewater using three plant bioassays. Mutat Res. 1999;426:211–4.

    Article  CAS  PubMed  Google Scholar 

  7. Chakraborty R, Mukherjee AK, Mukherjee A. Evaluation of genotoxicity of coal fly ash in Allium cepa root cells by combining comet assay with the Allium test. Environ Monit Assess. 2009;153:351–7.

    Article  CAS  PubMed  Google Scholar 

  8. Chang W, Chen M, Lee T. 2, 3, 5-Triphenyltetrazolium reduction in the viability assay of Ulva fasciata (Chlorophyta) in response to salinity stress. Bot Bull Acad Sin. 1999;40:207–12.

    CAS  Google Scholar 

  9. Delhaize E, Gruber BD, Ryan PR. The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Lett. 2007;581:2255–62.

    Article  CAS  PubMed  Google Scholar 

  10. Fernandes TCC, Mazzeo DEC, Marin-Morales MA. Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide. Pestic Biochem Physiol. 2007;88:252–9.

    Article  CAS  Google Scholar 

  11. Firbas P, Amon T. Allium chromosome aberration test for evaluation effect of cleaning municipal water with Constructed Wetland (CW) in Sveti Tomaž, Slovenia. J Bioremed Biodegrad. 2013;4:189–93.

    Article  Google Scholar 

  12. Ghosh M, Bandyopadhyay M, Mukherjee A. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere. 2010;81:1253–62.

    Article  CAS  PubMed  Google Scholar 

  13. Ghosh M, Bhadra S, Adegoke A, Bandyopadhyay M, Mukherjee A. MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper—methylation. Mutat Res. 2015;774:49–58.

    Article  CAS  PubMed  Google Scholar 

  14. Gonzalez-Fernandez A, Hernandez P, Lopez-Saez JF. Effect of caffeine and adenosine on G2 repair: mitotic delay and chromosome damage. Mutat Res. 1985;149:275–81.

    Article  CAS  PubMed  Google Scholar 

  15. Grant WF. Chromosome aberration assays in Allium. A report of the U.S. environmental protection agency gene-tox program. Mutat Res. 1982;99:273–91.

    Article  CAS  PubMed  Google Scholar 

  16. Halliwell B, Gutteridge J. Lipid peroxidation in brain homogenates: the role of iron and hydroxyl radicals. J Neurochem. 1997;69:1330–1.

    Article  CAS  PubMed  Google Scholar 

  17. Kim YJ, Choi HS, Song MK, Youk DY, Kim JH, Ryu JC. Genotoxicity of aluminum oxide (Al2O3) nanoparticle in mammalian cell lines. Mol Cell Toxicol. 2009;5:172–8.

    Google Scholar 

  18. Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N. Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater. 2011;190:613–21.

    Article  CAS  PubMed  Google Scholar 

  19. Kumari M, Mukherjee A, Chandrasekaran N. Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ. 2009;407:5243–6.

    Article  CAS  PubMed  Google Scholar 

  20. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem. 2010;29:669–75.

    Article  CAS  PubMed  Google Scholar 

  21. Leme DM, Marin-Moralis MA. Allium cepa test in environmental monitoring: a review on its application. Mutat Res. 2009;682:71–81.

    Article  CAS  PubMed  Google Scholar 

  22. Liman R. Genotoxic effects of Bismuth (III) oxide nanoparticles by Allium and Comet assay. Chemosphere. 2013;93:269–73.

    Article  CAS  PubMed  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    CAS  PubMed  Google Scholar 

  24. Ma TH, Xu Z, Xu C, McConnell H, Rabago EV, Arreola GA, Zhang H. The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants. Mutat Res. 1995;334:185–95.

    Article  CAS  PubMed  Google Scholar 

  25. Matagne R. Duration of mitotic cycle and patterns of DNA replication in chromosomes of Allium cepa. Caryologia. 1968;21:209–24.

    Article  Google Scholar 

  26. Matsumoto H, Motoda H. Aluminum toxicity recovery processes in root apices. Possible association with oxidative stress. Plant Sci. 2012;185:1–8.

    Article  PubMed  Google Scholar 

  27. Okhawa H, Ohishi N, Yagi K. Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–5.

    Article  Google Scholar 

  28. Panda KK, Achary VM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB. In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro. 2011;25:1097–105.

    Article  CAS  PubMed  Google Scholar 

  29. Panda KK, Lenka M, Panda BB. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant I. Distribution, availability and genotoxicity of sediment mercury in the Rushikulya estuary, India. Sci Total Environ. 1990;96:281–96.

    Article  CAS  Google Scholar 

  30. Patra J, Sahoo MK, Panda BB. Persistence and prevention of aluminium-and paraquat-induced adaptive response to methyl mercuric chloride in plant cells in vivo. Mutat Res. 2003;538:51–61.

    Article  CAS  PubMed  Google Scholar 

  31. Prabhakar PV, Reddy UA, Singh SP, Balasubramanyam A, Rahman MF, Indu Kumari S, Agawane SB, Murty US, Grover P, Mahboob M. Oxidative stress induced by aluminum oxide nanomaterials after acute oral treatment in Wistar rats. J Appl Toxicol. 2012;32(6):436–45.

    Article  CAS  PubMed  Google Scholar 

  32. Rajeshwari A, Kavitha S, Alex SA, Kumar D, Mukherjee A, Chandrasekaran N, Mukherjee A. Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip—effects of oxidative stress generation and biouptake. Environ Sci Pollut Res. 2015;22:11057–66.

    Article  CAS  Google Scholar 

  33. Ranjbar GH, Cheraghi SAM, Banakar MH. Salt sensitivity of wheat at germination stage. In: Kafi M, Ajmal-Khan M, editors. Crop and forage production using saline waters in dry areas. New Delhi: Daya Publishing; 2008. p. 200–4.

    Google Scholar 

  34. Schickler H, Caspi H. Response of antioxidative enzymes to nickel and stress in hyperaccumulator plants of the genus Alyssum. Physiol Plant. 1999;105:39–44.

    Article  CAS  Google Scholar 

  35. Sharma AK, Sharma A. Chromosome techniques- theory and practice. 3rd ed. London: Butterworths Ltd; 1980.

    Google Scholar 

  36. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175:184–91.

    Article  CAS  PubMed  Google Scholar 

  37. Stroinski A, Kubis J, Zielezinska M. Effect of cadmium on glutathione reductase potato tubers. Acta Physiol Plant. 1999;21:201–7.

    Article  CAS  Google Scholar 

  38. Yanik F, Vardar F. Toxic Effects of Aluminum Oxide (Al2O3) Nanoparticles on root growth and development in Triticum aestivum. Water Air Soil Pollut. 2015;226:1–13.

    Article  CAS  Google Scholar 

  39. Zhang J, Bao SD, Furumai R, Kueera KS, Ali A, Dean NA. Protein phosphate 5 is required for ATR mediated check point activation. Mol Cell Biol. 2005;25:9910–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the University Grant Commission for financial assistance [UGC-MRP (41-1116/2012[SR] dt.01.07.2012] and thank the reviewers for their valuable suggestion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Mukherjee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, A., Chakrabarti, M., Ghosh, I. et al. Evaluation of genotoxicity and oxidative stress of aluminium oxide nanoparticles and its bulk form in Allium cepa . Nucleus 59, 219–225 (2016). https://doi.org/10.1007/s13237-016-0179-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-016-0179-y

Keywords

Navigation