Skip to main content
Log in

Selenium nanoparticles are less toxic than inorganic and organic selenium to mice in vivo

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) provide versatile means to reduce the toxicity, enhance bioactivity and improve targeting of cells. The antioxidant and pro-oxidant effects, or bioavailability and toxicity, of selenium depend on its chemical form. In the present study the effects of nano-selenium (Nano-Se) was compared with inorganic and organic selenium on the basis of their antioxidative activities and hematological parameters in Swiss albino mice. At an oral dose of 2 mg Se/kg b.w. per day administered for consecutive 28 days, both forms of selenium suppressed mice growth rather than Nano-Se. Abnormal liver and kidney function were more pronounced with selenite treatment than Nano-Se as indicated by the increase of hepatotoxic and renal toxic marker in serum and also confirmed by histological examination. After being treated with different forms of selenium it can be seen that the activity of enzymes have increased considerably in case of Nano-Se. Synthesized selenium nanoparticles, caused less bone marrow cell death and prevented DNA damage, compared to other forms of selenium. Our results suggest that Nano-Se as an antioxidant can serve as a potential chemopreventive agent with reduced risk of selenium toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmadinejad F, Geir Møller S, Hashemzadeh-Chaleshtori M, Bidkhori G, Jami MS. Molecular mechanisms behind free radical scavengers function against oxidative stress. Antioxidants (Basel). 2017;6(3):51.

    Google Scholar 

  2. ATSDR. Toxicological profiles for selenium. Atlanta: U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry; 2003. p. 1–457.

    Google Scholar 

  3. Balogh K, Elbaraasi H, Mezes M. Selenium toxicity in fishes. Halaszat. 2002;95:30–3 (in Hungarian).

    Google Scholar 

  4. Basu A, Bhattacharjee A, Samanta A, Bhattacharya S. Prevention of cyclophosphamide-induced hepatotoxicity and genotoxicity: effect of an l-cysteine based oxovanadium(IV) complex on oxidative stress and DNA damage. Environ Toxicol Pharmacol. 2015;40:747–57.

    CAS  PubMed  Google Scholar 

  5. Basu A, Singha Roy S, Bhattacharjee A, Bhuniya A, Baral R, Biswas J, Bhattacharya S. Vanadium(III)-l-cysteine protects cisplatin-induced nephropathy through activation of Nrf2/HO-1 pathway. Free Radic Res. 2016;50(1):39–55.

    CAS  PubMed  Google Scholar 

  6. Bhattacharjee A, Basu A, Biswas J, Bhattacharya S. Nano-Se attenuates cyclophosphamide-induced pulmonary injury through modulation of oxidative stress and DNA damage in Swiss albino mice. Mol Cell Biochem. 2015;405:243–56.

    CAS  PubMed  Google Scholar 

  7. Bhattacharjee A, Basu A, Ghosh P, Biswas J, Bhattacharya S. Protective effect of selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice. J Biomater Appl. 2014;29:303–17.

    CAS  PubMed  Google Scholar 

  8. Birge WJ. Aquatic toxicology of trace elements of coal and fly ash. In: Thorp JH, Gibbons JW, editors. Energy and environmental stress in aquatic systems, vol. 48. Washington: Department of Energy Symposium Series; 1978. p. 219–40.

    Google Scholar 

  9. Biswas SJ, Pathak S, Khuda Bukhsh AR. Assessment of the genotoxic and cytotoxic potential of an antiepileptic drug phenobarbital, in mice: a time course study. Mutat Res. 2004;563:1–11.

    CAS  PubMed  Google Scholar 

  10. Carl Allinson MJ. A specific enzymatic method for the determination of creatine and creatinine in blood. J Biol Chem. 1945;157:169–72.

    Google Scholar 

  11. Chaudiere J, Courtin O, Leclaire J. Glutathione oxidase activity of selenocystamine: a mechanistic study. Arch Biochem Biophys. 1992;296:328–36.

    CAS  PubMed  Google Scholar 

  12. D’Armour FE, Blood FR, Belden DA. The manual for laboratory work in mammalian physiology. 3rd ed. Chicago: The University of Chicago Press; 1965.

    Google Scholar 

  13. Fernandes AP, Gandin V. Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta. 2015;1850:1642–60.

    CAS  PubMed  Google Scholar 

  14. Ganther HE. Metabolism of hydrogen selenide and methylated selenides. Adv Nutr Res. 1979;2:107–28.

    CAS  Google Scholar 

  15. Goehring TB. Toxic effects of selenium on growing swine fed corn–soybean meal diets. J Anim Sci. 1984;59:733–7.

    CAS  PubMed  Google Scholar 

  16. Green DE, Albers PH. Diagnostic criteria for selenium toxicosis in aquatic birds: histologic lesions. J Wildl Dis. 1997;33:385–404.

    CAS  PubMed  Google Scholar 

  17. Habig WH, Pabst MJ, Jacoby WB. Glutathione S-transferases, the first enzymatic step in marcapturic acid formation. J Biol Chem. 1974;249:7130–9.

    CAS  PubMed  Google Scholar 

  18. Halliwell RE. Autoimmune diseases in domestic animals. J Am Vet Med Assoc. 1982;18:1088–96.

    Google Scholar 

  19. Hilton JW, Hodson PV, Slinger SJ. Absorption, distribution, half-life and possible routes of elimination of dietary selenium in juvenile rainbow trout (Salmo gairdneri). Comp Biochem Physiol. 1982;71C:49–55.

    CAS  Google Scholar 

  20. Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q. Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomed. 2018;13:2107–28.

    CAS  Google Scholar 

  21. Hurst R, Collings R, Harvey LJ, King M, Hooper L, Bouwman J, Gurinovic M, Fairweather-Tait SJ. EURRECA—estimating selenium requirements for deriving dietary reference values. Crit Rev Food Sci Nutr. 2013;53:1077–96.

    CAS  PubMed  Google Scholar 

  22. Ibrahim SAZ, Kerkadi A, Agouni A. Selenium and health: an update on the situation in the Middle East and North Africa. Nutrients. 2019;11(7):1457.

    CAS  PubMed Central  Google Scholar 

  23. Kind PR, King EJ. Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. J Clin Pathol. 1954;7:322–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumar S, Tomar MS, Acharya A. Carboxylic group-induced synthesis and characterization of selenium nanoparticles and its anti-tumor potential on Dalton’s lymphoma cells. Colloids Surf B Biointerfaces. 2015;126:546–52.

    CAS  PubMed  Google Scholar 

  25. Kuria A, Fang X, Li M, Han H, He J, Aaseth JO, Cao Y. Does dietary intake of selenium protect against cancer? A systematic review and meta-analysis of population-based prospective studies. Crit Rev Food Sci Nutr. 2018;20:1–11.

    Google Scholar 

  26. Leme DM, Marin-Morales MA. Chromosome aberration and micronucleus frequencies in Allium cepa cells exposed to petroleum polluted water—a case study. Mutat Res. 2008;650:80.

    CAS  PubMed  Google Scholar 

  27. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–76.

    CAS  PubMed  Google Scholar 

  28. Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011;15:1957–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Luck HA. Spectrophotometric method for estimation of catalase. In: Bergmeyer HV, editor. Methods of enzymatic analysis. New York: Academic Press; 1963. p. 886–8.

    Google Scholar 

  30. Marklund S, Marklund G. Involvement of the superoxide anion radical in autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469–74.

    CAS  PubMed  Google Scholar 

  31. Mather A, Roland D. The automated thiosemicarbazide-diacetyl monoxime method for plasma urea. Clin Chem. 1969;15:393–6.

    CAS  PubMed  Google Scholar 

  32. McCord JM, Fridovich I. Superoxide dismutase: an enzymatic function for erythrocuprein (hemoprotein). J Biol Chem. 1969;244:6049–55.

    CAS  PubMed  Google Scholar 

  33. McDowell LR. Minerals for grazing ruminants in tropical regions. Gainesville: Bull Univ Florida; 1997. p. 1–69.

    Google Scholar 

  34. Moeasgaard S, Morrill R. The need for speciation to realise the potential of selenium in disease prevention. In: Ebdon L, editor. Trace element speciation for environment, food and health. London: Royal Society of Chemistry; 2002. p. 261–83.

    Google Scholar 

  35. Mousa SA, Bharali DJ. Nanotechnology-based detection and targeted therapy in cancer: nano-bio paradigms and applications. Cancers (Basel). 2011;3:2888–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94:355–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mustacich D, Powis G. Thioredoxin reductase. Biochem J. 2000;346:1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Øarskov H, Flyvbjerg A. Selenium and human health. Lancet. 2000;356:942–3.

    Google Scholar 

  39. Okhawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Ann Biochem. 1979;95:351–8.

    Google Scholar 

  40. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158–69.

    CAS  PubMed  Google Scholar 

  41. Poole LG, Dolin CE, Arteel GE. Organ–organ crosstalk and alcoholic liver disease. Biomolecules. 2017;7:3.

    Google Scholar 

  42. Rayman MP. Selenium and human health. Lancet. 2012;379:1256–68.

    CAS  PubMed  Google Scholar 

  43. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28:56–63.

    CAS  PubMed  Google Scholar 

  44. Ren X, Zou L, Zhang X, Branco V. Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system. Antioxid Redox Signal. 2017;27:989–1010.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rodríguez-Hernández Á, Zumbado M, Henríquez-Hernández LA, Boada LD, Luzardo OP. Dietary intake of essential, toxic, and potentially toxic elements from mussels (Mytilus spp.) in the Spanish population: a nutritional assessment. Nutrients. 2019;17(4):864.

    Google Scholar 

  46. Sahil H. Klinische Untersuchungsmethoden. 5th ed. Wien: Leipsic and Vienna; 1909. p. 845.

    Google Scholar 

  47. Sedlack J, Lindsay RN. Estimation of total protein bound and non-protein sulfhydryl groups in tissue with Ellman’s reagent. Ann Biochem. 1968;25:192–205.

    Google Scholar 

  48. Seko Y, Saito Y, Kitahara J, Imura N. Active oxygen generation by the reaction of selenite with reduced glutathione in vitro. In: Wendel A, editor. Selenium in biology and medicine. Berlin: Springer; 1989. p. 70–3.

    Google Scholar 

  49. Singh NP, McCoy MT, Tice RR. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175:184–91.

    CAS  PubMed  Google Scholar 

  50. Snider GW, Ruggles E, Khan N, Hondal RJ. Selenocysteine confers resistance to inactivation by oxidation in thioredoxin reductase: comparison of selenium and sulfur enzymes. Biochemistry. 2013;52:5472–81.

    CAS  PubMed  Google Scholar 

  51. Stoffaneller R, Morse NL. A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients. 2015;7:1494–537.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Thorlacius-Ussing O. Selenium-induced growth retardation. Histochemical and endocrinological studies on the anterior pituitaries of selenium treated rats. Dan Med Bull. 1990;37(4):347–58.

    CAS  PubMed  Google Scholar 

  53. Ungvári É, Monori I, Megyeri A, Csiki Z, Prokisch J, Sztrik A, Jávor A, Benkő I. Protective effects of meat from lambs on selenium nanoparticle supplemented diet in a mouse model of polycyclic aromatic hydrocarbon-induced immunotoxicity. Food Chem Toxicol. 2014;64:298–306.

    PubMed  Google Scholar 

  54. Us EPA. Ambient water quality criteria for selenium—EPA-440/5-87-006. Washington: U.S. Environmental Protection Agency, Office of Water Regulation and Standards; 1987. p. 1–23.

    Google Scholar 

  55. Valdiglesias V, Pásaro E, Méndez J, Laffon B. In vitro evaluation of selenium genotoxic, cytotoxic, and protective effects: a review. Arch Toxicol. 2010;84:337–51.

    CAS  PubMed  Google Scholar 

  56. Wang X, Zhang J, Xu T. Cyclophosphamide as a potent inhibitor of tumor thioredoxin reductase in vivo. Toxicol Appl Pharmacol. 2007;218:88–95.

    CAS  PubMed  Google Scholar 

  57. Wintrobe MM, Lee DR, Boggs DR, Bithel TC, Athens JW, Foerester J. Clinical hematology. 5th ed. Philadelphia: Les and Febiger; 1961.

    Google Scholar 

  58. Xie ZZ, Liu Y, Bian JS. Hydrogen sulfide and cellular redox homeostasis. Oxid Med Cell Longev. 2016;2016:6043038.

    PubMed  PubMed Central  Google Scholar 

  59. Yang G, Wang S, Zhou R, Sun S. Endemic selenium intoxication of humans in China. Am J Clin Nutr. 1982;37:872–5.

    Google Scholar 

  60. Zhang J, Wang H, Bao Y, Zhang L. Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice. Life Sci. 2004;75:237–44.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Arin Bhattacharjee gratefully acknowledges Indian Council of Medical Research (ICMR) for Senior Research Fellowship (No. 45/36/2008/PHA-BMS). Abhishek Basu also gratefully acknowledges ICMR for Senior Research Fellowship (No. 3/2/2/58/2011/NCD-III). The authors wish to thank the Director, CNCI, for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudin Bhattacharya.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sudin Bhattacharya: Retired.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, A., Basu, A. & Bhattacharya, S. Selenium nanoparticles are less toxic than inorganic and organic selenium to mice in vivo. Nucleus 62, 259–268 (2019). https://doi.org/10.1007/s13237-019-00303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-019-00303-1

Keywords

Navigation