Skip to main content
Log in

Mitral Valve Patient-Specific Finite Element Modeling from Cardiac MRI: Application to an Annuloplasty Procedure

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

We aim at testing the possibility to build patient-specific structural finite element models (FEMs) of the mitral valve (MV) from cardiac magnetic resonance (CMR) imaging and to use them to predict the outcome of mitral annuloplasty procedures. MV FEMs were built for one healthy subject and for one patient with ischemic mitral regurgitation. On both subjects, CMR imaging of 18 long-axis planes was performed with a temporal resolution of 55 time-frames per cardiac cycle. Three-dimensional MV annulus geometry, leaflets surface and PM position were manually obtained using custom software. Hyperelastic anisotropic mechanical properties were assigned to MV tissues. A physiological pressure load was applied to the leaflets to simulate valve closure until peak systole. For the pathological model only, a further simulation was run, simulating undersized rigid annuloplasty before valve closure. Closure dynamics, leaflets stresses and tensions in the subvalvular apparatus in the healthy MV were consistent with previous computational and experimental data. The regurgitant valve model captured with good approximation the real size and position of regurgitant areas at peak systole, and highlighted abnormal tensions in the annular region and sub-valvular apparatus. The simulation of undersized rigid annuloplasty showed the restoration of MV continence and normal tensions in the subvalvular apparatus and at the annulus. Our method seems suitable for implementing detailed patient-specific MV FEMs to simulate different scenarios of clinical interest. Further work is mandatory to test the method more deeply, to reduce its computational time and to expand the range of modeled surgical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Arnoldi, A., A. Invernizzi, R. Ponzini, E. Votta, E. G. Caiani, and A. Redaelli. Mitral valve models reconstructor: a Python based GUI software in a HPC environment for patient-specific FEM structural analysis. Innovations and Advances in Computer Sciences and Engineering, Netherlands: Springer, 2010, pp. 215–219.

  2. Avanzini, A. A computational procedure for prediction of structural effects of edge-to-edge repair on mitral valve. J. Biomech. Eng. 130(3):031015, 2008.

    Article  Google Scholar 

  3. Bothe, W., J. P. Kvitting, J. C. Swanson, S. Hartnett, N. B. Ingels, Jr., and D. C. Miller. Effects of different annuloplasty rings on anterior mitral leaflet dimensions. J. Thorac. Cardiovasc. Surg. 139(5):1114–1122, 2010.

    Article  Google Scholar 

  4. Bouma, W., I. C. van der Horst, I. J. Wijdh-den Hamer, M. E. Erasmus, F. Zijlstra, M. A. Mariani, and T. Ebels. Chronic ischaemic mitral regurgitation. Current treatment results and new mechanism-based surgical approaches. Eur. J. Cardiothorac. Surg. 37(1):170–185, 2010.

    Article  Google Scholar 

  5. Gammie, J. S., S. Sheng, B. P. Griffith, E. D. Peterson, J. S. Rankin, S. M. O’Brien, and J. M. Brown. Trends in mitral valve surgery in the United States: results from the Society of Thoracic Surgeons Adult Cardiac Surgery Database. Ann. Thorac. Surg. 87(5):1431–1437, 2009; discussion 1437–1439.

    Article  Google Scholar 

  6. Hung, J., L. Papakostas, S. A. Tahta, B. G. Hardy, B. A. Bollen, C. M. Duran, and R. A. Levine. Mechanism of recurrent ischemic mitral regurgitation after annuloplasty: continued LV remodeling as a moving target. Circulation 110(11 Suppl 1):II85–II90, 2004.

    Google Scholar 

  7. Jimenez, J. H., D. D. Soerensen, Z. He, S. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann. Biomed. Eng. 31(10):1171–1181, 2003.

    Article  Google Scholar 

  8. Kaji, S., M. Nasu, A. Yamamuro, K. Tanabe, K. Nagai, T. Tani, K. Tamita, K. Shiratori, M. Kinoshita, M. Senda, Y. Okada, and S. Morioka. Annular geometry in patients with chronic ischemic mitral regurgitation: three-dimensional magnetic resonance imaging study. Circulation 112(9 Suppl):I409–I414, 2005.

    Google Scholar 

  9. Krishnamurthy, G., D. B. Ennis, A. Itoh, W. Bothe, J. C. Swanson, M. Karlsson, E. Kuhl, D. C. Miller, and N. B. Ingels, Jr. Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am. J. Physiol. Heart Circ. Physiol. 295(3):H1141–H1149, 2008.

    Article  Google Scholar 

  10. Krishnamurthy, G., A. Itoh, J. C. Swanson, W. Bothe, M. Karlsson, E. Kuhl, D. Craig Miller, and N. B. Ingels, Jr. Regional stiffening of the mitral valve anterior leaflet in the beating ovine heart. J. Biomech. 42(16):2697–2701, 2009.

    Article  Google Scholar 

  11. Krishnamurthy, G., A. Itoh, J. C. Swanson, D. C. Miller, and N. B. Ingels, Jr. Transient stiffening of mitral valve leaflets in the beating heart. Am. J. Physiol. Heart Circ. Physiol. 298(6):H2221–H2225, 2010.

    Article  Google Scholar 

  12. Kunzelman, K. S., and R. P. Cochran. Mechanical properties of basal and marginal mitral valve chordae tendineae. ASAIO Trans. 36(3):M405–M408, 1990.

    Google Scholar 

  13. Kunzelman, K. S., D. W. Quick, and R. P. Cochran. Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis. Ann. Thorac. Surg. 66(6 Suppl):S198–S205, 1998.

    Article  Google Scholar 

  14. Kunzelman, K. S., M. S. Reimink, and R. P. Cochran. Flexible versus rigid ring annuloplasty for mitral valve annular dilatation: a finite element model. J. Heart Valve Dis. 7(1):108–116, 1998.

    Google Scholar 

  15. Kunzelman, K. S., D. R. Einstein, and R. P. Cochran. Fluid-structure interaction models of the mitral valve: function in normal and pathological states. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362(1484):1393–1406, 2007.

    Article  Google Scholar 

  16. Lam, J. H., N. Ranganathan, E. D. Wigle, and M. D. Silver. Morphology of the human mitral valve. I. Chordae tendineae: a new classification. Circulation 41(3):449–458, 1970.

    Google Scholar 

  17. May-Newman, K., and F. C. Yin. A constitutive law for mitral valve tissue. J. Biomech. Eng. 120(1):38–47, 1998.

    Article  Google Scholar 

  18. McGee, E. C., A. M. Gillinov, E. H. Blackstone, J. Rajeswaran, G. Cohen, F. Najam, T. Shiota, J. F. Sabik, B. W. Lytle, P. M. McCarthy, and D. M. Cosgrove. Recurrent mitral regurgitation after annuloplasty for functional ischemic mitral regurgitation. J. Thorac. Cardiovasc. Surg. 128(6):916–924, 2004.

    Google Scholar 

  19. Prot, V., B. Skallerud, G. Sommer, and G. A. Holzapfel. On modelling and analysis of healthy and pathological human mitral valves: two case studies. J. Mech. Behav. Biomed. Mater. 3(2):167–177, 2010.

    Article  Google Scholar 

  20. Sacks, M. S., Z. He, L. Baijens, S. Wanant, P. Shah, H. Sugimoto, and A. P. Yoganathan. Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 30(10):1281–1290, 2002.

    Article  Google Scholar 

  21. Skallerud, B., V. Prot, and I. S. Nordrum. Modeling active muscle contraction in mitral valve leaflets during systole: a first approach. Biomech. Model. Mechanobiol. 2010. doi:10.1007/s10237-010-0215-9

  22. Timek, T., J. R. Glasson, P. Dagum, G. R. Green, J. F. Nistal, M. Komeda, G. T. Daughters, A. F. Bolger, L. E. Foppiano, N. B. Ingels, Jr., and D. C. Miller. Ring annuloplasty prevents delayed leaflet coaptation and mitral regurgitation during acute left ventricular ischemia. J. Thorac. Cardiovasc. Surg. 119(4 Pt 1):774–783, 2000.

    Article  Google Scholar 

  23. Votta, E., F. Maisano, S. F. Bolling, O. Alfieri, F. M. Montevecchi, and A. Redaelli. The Geoform disease-specific annuloplasty system: a finite element study. Ann. Thorac. Surg. 84(1):92–101, 2007.

    Article  Google Scholar 

  24. Votta, E., E. Caiani, F. Veronesi, M. Soncini, F. M. Montevecchi, and A. Redaelli. Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366(1879):3411–3434, 2008.

    Article  Google Scholar 

  25. Yu, H. Y., M. Y. Su, T. Y. Liao, H. H. Peng, F. Y. Lin, and W. Y. Tseng. Functional mitral regurgitation in chronic ischemic coronary artery disease: analysis of geometric alterations of mitral apparatus with magnetic resonance imaging. J. Thorac. Cardiovasc. Surg. 128(4):543–551, 2004.

    Article  Google Scholar 

Download references

Acknowledgment

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 224635.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Stevanella.

Additional information

Associate Editor Bruce H. KenKnight oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevanella, M., Maffessanti, F., Conti, C.A. et al. Mitral Valve Patient-Specific Finite Element Modeling from Cardiac MRI: Application to an Annuloplasty Procedure. Cardiovasc Eng Tech 2, 66–76 (2011). https://doi.org/10.1007/s13239-010-0032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-010-0032-4

Keywords

Navigation