Skip to main content

Advertisement

Log in

Hemodynamics in Normal and Diseased Livers: Application of Image-Based Computational Models

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

This investigation demonstrates the utility of image-based computational models in portal venous hemodynamics. The long-term objective is to develop methodologies based upon noninvasive imaging and hemodynamic computational models for blood flow in major vessels of the liver that will significantly augment and improve current practices in clinical care. Magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) were used to investigate liver hemodynamics. MRI data were obtained in 7 healthy subjects and 4 patients diagnosed with cirrhosis, and computational models were developed and validated for two healthy subjects and two patients. Additional simulations of post-prandial hemodynamics and portal hypertension were completed. The MRI studies identified several new parameters (portal vein V avg/total liver volume, V var, splenic vein flow rate per total liver volume, and % splenic flow/portal vein flow) that offer statistical differentiation between healthy subjects and patients with liver disease. Computational models were used to calculate the contribution of blood supply to the right and left lobes of the liver derived from the superior mesenteric vein (greater in healthy subjects vs. patients); and simulate post-prandial conditions and progressive portal hypertension. CFD offers a tool to test hypotheses without the acquisition of additional data and elucidate hemodynamic effects as disease progresses. In addition, several new MRI derived parameters have been identified as having promise to distinguish between healthy and patient groups and, potentially, to monitor disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. American Liver Foundation. Retrieved from http://www.liverfoundation.org/ on July 28, 2014.

  2. Annett, L., R. Materne, E. Danse, J. Jamart, Y. Horsmans, and B. E. Van Beers. Hepatic flow parameters measured with MR imaging and Doppler US: correlations with degree of cirrhosis and portal hypertension. Radiology 229(2):409–414, 2003.

    Article  Google Scholar 

  3. Botar, C. C., T. Vasile, S. Sfrangeu, S. Clichici, P. S. Agachi, R. Badea, P. Mircea, and M. V. Cristea. Validation of CFD simulation results in case of portal vein blood flow. Comput. Aided Chem. Eng. 28:205–210, 2010.

    Article  Google Scholar 

  4. Dasi, L. P., K. Whitehead, K. Pekkan, D. de Zelicourt, K. Sundareswaran, K. Kanter, M. Fogel, and A. P. Yoganathan. Pulmonary hepatic flow distribution in total cavopulmonary connections: extracardiac versus intracardiac. J. Thorac. Cardiovasc. Surg. 141(1):207–214, 2011.

    Article  Google Scholar 

  5. Debbaut, C., J. Vierendeels, C. Casteleyn, P. Cornillie, D. Van Loo, P. Simoens, L. Van Hoorebeke, D. Monbaliu, and P. Segers. Perfusion characteristics of the human hepatic microcirculation based on three-dimensional reconstructions and computational fluid dynamic analysis. J. Biomech. Eng. Trans. ASME 134(1), 2012.

  6. Debbaut, C., D. Monbaliu, C. Casteleyn, P. Cornillie, D. Van Loo, B. Masschaele, J. Pirenne, P. Simoens, L. Van Hoorebeke, and P. Segers. From vascular corrosion cast to electrical analog model for the study of human liver hemodynamics and perfusion. IEEE Trans. Biomed. Eng. 58(1):25–35, 2011.

    Article  Google Scholar 

  7. Frydrychowicz, A., B. R. Landgraf, E. Niespodzany, R. W. Verma, A. Roldán-Alzate, K. M. Johnson, O. Wieben, and S. B. Reeder. Four-dimensional velocity mapping of the hepatic and splanchnic vasculature with radial sampling at 3 tesla: a feasibility study in portal hypertension. J. Magn. Reson. Imaging 34(3):577–584, 2011.

    Article  Google Scholar 

  8. Ho, C., R. Lin, S. F. Tsai, R. H. Hu, P. C. Liang, T. W. H. Sheu, and P. Lee. Simulation of portal hemodynamic changes in a donor after right hepatectomy. J. Biomech. Eng. 132:041002-1-7, 2010.

  9. Ho, H., A. Bartlett, and P. Hunter. Non-Newtonian blood flow analysis for the portal vein based on a CT image. In: Abdominal Imaging. Computational and Clinical Applications. Berlin: Springer, 2012, pp. 283–291.

  10. Ho, H., K. Sorrell, L. Peng, Z. Yang, A. Holden, and P. Hunter. Hemodynamic analysis for transjugular intrahepatic portosystemic shunt (TIPS) in the liver based on a CT-image. IEE Trans. Med. Imaging 32(1):92–98, 2013.

    Article  Google Scholar 

  11. Kashitani, N., S. Kimoto, M. Tsunoda, T. Ito, T. Tsuji, A. Ono, and Y. Hiraki. Portal blood blow in the presence or absence of diffuse liver disease: measurement by phase contrast MR imaging. Abdom. Imaging 20(3):197–200, 1995.

    Article  Google Scholar 

  12. Kayacetin, E., D. Efe, and C. Dogan. Portal and splenic hemodynamics in cirrhotic patients: relationship between esophageal variceal bleeding and the severity of hepatic failure. J. Gastroenterol. 39(7):661–667, 2004.

    Article  Google Scholar 

  13. Liver Circulation. Retrieved from http://www.studyblue.com/notes/note/n/phys-gi-/deck/3159802 on July 23, 2014.

  14. Lycklama à Nijeholt, G. J., K. Burggraaf, M. N. Wasser, L. J. Schultze Kool, R. C. Schoemaker, A. F. Cohen, and A. de Roos. Variability of splanchnic blood flow measurements using MR velocity mapping under fasting and post-prandial conditions-comparison with echo-doppler. J. Hepatol. 26(2):298–304, 1997.

  15. Murphy, S., J. Xu, and K. Kochanek. Deaths: preliminary data for 2010. Natl Vital Stat. Rep. 60(4):1–52, 2012.

    Google Scholar 

  16. Nanashima, A., S. Shibasaki, I. Sakamoto, E. Sueyoshi, Y. Sumida, T. Abo, T. Nagasaki, T. Sawai, T. Yasutake, and T. Nagayasu. Clinical evaluation of magnetic resonance imaging flowmetry of portal and hepatic veins in patients following hepatectomy. Liver Int. 26(5):587–594, 2006.

    Article  Google Scholar 

  17. Pereira, J. M. C., J. P. Serra e Moura, A. R. Ervilha, and J. C. F. Pereira. On the uncertainty quantification of blood flow viscosity models. Chem. Eng. Sci. 101:253–265, 2013.

  18. Petkova, S., A. Hossain, J. Naser, and E. Palombo. CFD modeling of blood flow in portal vein hypertension with and without thrombosis. In Third International Conference on CFD in the Minerals and Process Industries. 2003.

  19. Rani, H. P., T. W. Sheu, T. M. Chang, and P. C. Liang. Numerical investigation of non-newtonian microcirculatory blood flow in hepatic lobule. J. Biomech. 39(3):551–563, 2006.

    Article  Google Scholar 

  20. Roldán-Alzate, A., A. Frydrychowicz, E. Niespodzany, B. R. Landgraf, K. M. Johnson, O. Wieben, and S. B. Reeder. In vivo validation of 4D flow MRI for assessing the hemodynamics of portal hypertension. J. Magn. Reson. Imaging 37(5):1100–1108, 2012.

    Article  Google Scholar 

  21. Sadek, A. G., F. B. Mohamed, E. K. Outwater, S. S. El-Essawy, and D. G. Mitchell. Respiratory and postprandial changes in portal flow rate: assessment by phase contrast MR imaging. J. Magn. Reson. Imaging 6(1):90–93, 2005.

    Article  Google Scholar 

  22. Stankovic, Z., Z. Csatari, P. Deibert, W. Euringer, P. Blanke, W. Kreisel, Z. Zadeh, F. Kallfass, M. Langer, and M. Markl. Normal and altered three-dimensional portal venous hemodynamics in patients with liver cirrhosis. Radiology 262(3):862–873, 2012.

    Article  Google Scholar 

  23. Stankovic, Z., Z. Csatari, P. Deibert, W. Euringer, B. Jung, W. Kreisel, J. Geiger, M. Russe, M. Langer, and M. Markl. A feasibility study to evaluate splanchnic arterial and venous hemodynamics by flow-sensitive 4D MRI compared with Doppler ultrasound in patients with cirrhosis and controls. Eur. J. Gastroenterol. Hepatol. 25(6):669–675, 2013.

    Article  Google Scholar 

  24. Stankovic, Z., A. Frydrychowicz, Z. Csatari, E. Panther, P. Deibert, W. Euringer, W. Kreisel, M. Russe, S. Bauer, M. Langer, and M. Markl. MR-based visualization and quantification of three-dimensional flow characteristics in the portal venous system. J. Magn. Reson. Imaging 32(2):466–475, 2010.

    Article  Google Scholar 

  25. Sugano, S., K. Yamamoto, K. I. Sasao, and M. Watanabe. Portal venous blood flow while breath-holding after inspiration or expiration and during normal respiration in controls and cirrhotics. J. Gastroenterol. 34(5):613–618, 1999.

    Article  Google Scholar 

  26. Taourel, P., P. Perney, M. Dauzat, B. Gallix, J. Pradel, F. Blanc, L. Pourcelot, and J. M. Bruel. Doppler study of fasting and postprandial resistance indices in the superior mesenteric artery in healthy subjects and patients with cirrhosis. J. Clin. Ultrasound 26(3):131–136, 1998.

    Article  Google Scholar 

  27. Tsukuda, T., K. Ito, S. Koike, K. Sasaki, A. Shimizu, T. Fujita, M. Miyazaki, H. Kanazawa, C. Jo, and N. Matsunaga. Pre-and postprandial alterations of portal venous flow: evaluation with single breath-hold three-dimensional half-fourier fast spin-echo MR imaging and a selective inversion recovery tagging pulse. J. Magn. Reson. Imaging 22(4):527–533, 2005.

    Article  Google Scholar 

  28. van der Plaats, A., N. A. ‘t Hart, G. J. Verkerke, H. G. D. Leuvenink, P. Verdonck, R. J. Ploeg, and G. Rakhorst. Numerical simulation of the hepatic circulation. Int. J. Artif. Organs. 27(3):222–230, 2004.

  29. Yang, Y., S. M. George, D. R. Martin, A. R. Tannenbaum, and D. P. Giddens. 3D modeling of patient-specific geometries of portal veins using MR images. In: Proceedings of IEEE EMBS Annual International Conference, 2006, pp. 5290–5293.

  30. Yzet, T., R. Bouzerar, J. D. Allart, F. Demuynck, C. Legallais, B. Robert, H. Deramond, M. E. Meyer, and O. Balédent. Hepatic vascular flow measurements by phase contrast MRI and Doppler echography: a comparative and reproducibility study. J. Magn. Reson. Imaging 31(3):579–588, 2010.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the following for their support of this work; study volunteers, Puneet Sharma, PhD, Lakshmi Dasi, PhD, Jason Brinkley, PhD, Megha Sinha and the Cardiovascular Fluid Mechanics Laboratory. Research was partially supported by the Georgia Research Alliance and the East Carolina University Division of Research and Graduate Studies.

Statement of Human Studies

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national).

Statement of Animal Studies

No animal studies were carried out by the authors for this article.

Conflict of Interest

Author Stephanie M. George, Author Lisa M. Eckert, Author Diego R. Martin, and Author Don. P. Giddens declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie M. George.

Additional information

Associate Editor Steven C. George oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, S.M., Eckert, L.M., Martin, D.R. et al. Hemodynamics in Normal and Diseased Livers: Application of Image-Based Computational Models. Cardiovasc Eng Tech 6, 80–91 (2015). https://doi.org/10.1007/s13239-014-0195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-014-0195-5

Keywords

Navigation