Skip to main content
Log in

Simultaneous EEG-fMRI for working memory of the human brain

  • Review
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Memory plays an important role in human life. Memory can be divided into two categories, i.e., long term memory and short term memory (STM). STM or working memory (WM) stores information for a short span of time and it is used for information manipulations and fast response activities. WM is generally involved in the higher cognitive functions of the brain. Different studies have been carried out by researchers to understand the WM process. Most of these studies were based on neuroimaging modalities like fMRI, EEG, MEG etc., which use standalone processes. Each neuroimaging modality has some pros and cons. For example, EEG gives high temporal resolution but poor spatial resolution. On the other hand, the fMRI results have a high spatial resolution but poor temporal resolution. For a more in depth understanding and insight of what is happening inside the human brain during the WM process or during cognitive tasks, high spatial as well as high temporal resolution is desirable. Over the past decade, researchers have been working to combine different modalities to achieve a high spatial and temporal resolution at the same time. Developments of MRI compatible EEG equipment in recent times have enabled researchers to combine EEG-fMRI successfully. The research publications in simultaneous EEG-fMRI have been increasing tremendously. This review is focused on the WM research involving simultaneous EEG-fMRI data acquisition and analysis. We have covered the simultaneous EEG-fMRI application in WM and data processing. Also, it adds to potential fusion methods which can be used for simultaneous EEG-fMRI for WM and cognitive tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schmorrow DD, Fidopiastis CM (2011) Foundations of augmented cognition. Directing the future of adaptive systems: 6th International conference, FAC 2011, held as part of HCI/lecture notes in artificial intelligence. Springer, New York

  2. Park Y, Luo L, Parhi KK, Netoff T (2011) Seizure prediction with spectral power of EEG using cost-sensitive support vector machines. Epilepsia 52:1761–1770

    Article  PubMed  Google Scholar 

  3. Amin HU, Malik AS, Ahmad RF, Badruddin N, Kamel N, Hussain M et al (2015) Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australas Phys Eng Sci Med 38:1–11

    Article  Google Scholar 

  4. Hsu W-Y (2011) Continuous EEG signal analysis for asynchronous BCI application. Int J Neural Syst 21:335–350

    Article  PubMed  Google Scholar 

  5. Amin HU, Malik AS, Kamel N, Chooi W-T, Hussain M (2015) P300 correlates with learning & memory abilities and fluid intelligence. J Neuroeng Rehabil 12:1

    Article  Google Scholar 

  6. Lopes da Silva F (2013) EEG and MEG: relevance to neuroscience. Neuron 80:1112–1128

  7. Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78

    Article  Google Scholar 

  8. Chang C, Liu Z, Chen MC, Liu X, Duyn JH (2013) EEG correlates of time-varying BOLD functional connectivity. NeuroImage 72:227–236

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schoonheim MM, Geurts JJ, Landi D, Douw L, van der Meer ML, Vrenken H et al (2013) Functional connectivity changes in multiple sclerosis patients: a graph analytical study of MEG resting state data. Hum Brain Mapp 34:52–61

    Article  PubMed  Google Scholar 

  10. Dong L, Gong D, Valdes-Sosa PA, Xia Y, Luo C, Xu P et al (2014) Simultaneous EEG-fMRI: trial level spatio-temporal fusion for hierarchically reliable information discovery. NeuroImage 99:28–41

    Article  PubMed  Google Scholar 

  11. He B, Liu Z (2008) Multimodal functional neuroimaging: integrating functional MRI and EEG/MEG. Biomed Eng, IEEE Rev 1:23–40

    Article  Google Scholar 

  12. Yang L, Liu Z, He B (2010) EEG-fMRI reciprocal functional neuroimaging. Clin Neurophysiol 121:1240–1250

    Article  PubMed  PubMed Central  Google Scholar 

  13. Analoui M, Bronzino JD, Peterson DR (2012) Medical imaging: principles and practices, CRC Press

  14. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim S-G, Merkle H et al (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci 89:5951–5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karmonik C, York M, Grossman R, Kakkar E, Patel K, Haykal H et al (2010) An image analysis pipeline for the semi-automated analysis of clinical fMRI images based on freely available software. Comput Biol Med 40:279–287

    Article  PubMed  Google Scholar 

  16. Wehenkel L, Maquet P, Phillips C, Schrouff J, Kusse C (2012) Decoding semi-constrained brain activity from fMRI using support vector machines and gaussian processes. PloS One 7:e35860

    Article  PubMed  PubMed Central  Google Scholar 

  17. Faro SH, Mohamed FB (2010) BOLD fMRI: a guide to functional imaging for neuroscientists. Springer, New York

    Book  Google Scholar 

  18. Luo Q, Glover GH (2012) Influence of dense-array EEG cap on fMRI signal. Magn Reson Med 68:807–815

    Article  PubMed  Google Scholar 

  19. Lemieux L (2012) EEG-correlated fMRI in epilepsy. Introd Epilepsy 43:266

    Article  Google Scholar 

  20. Binder JR (2011) Functional MRI is a valid noninvasive alternative to Wada testing. Epilepsy Behav 20:214–222

    Article  PubMed  Google Scholar 

  21. Lindauer U, Dirnagl U, Füchtemeier M, Böttiger C, Offenhauser N, Leithner C et al (2010) Pathophysiological interference with neurovascular coupling - when imaging based on hemoglobin might go blind. Front Neuroenergetics. doi:10.3389/fnene.2010.00025

  22. Tong S, Thakor NV (2009) Quantitative EEG analysis methods and clinical applications. Artech House, Boston

    Google Scholar 

  23. Sui J, Adali T, Yu Q, Chen J, Calhoun VD (2011) A review of multivariate methods for multimodal fusion of brain imaging data. J Neurosci Methods 204:68–81

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jorge J, van der Zwaag W, Figueiredo P (2013) EEG-fMRI integration for the study of human brain function. NeuroImage 102:24–34

    Article  PubMed  Google Scholar 

  25. Herman P, Sanganahalli BG, Blumenfeld H, Rothman DL, Hyder F (2013) Quantitative basis for neuroimaging of cortical laminae with calibrated functional MRI. Proc Natl Acad Sci 110:15115–15120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stippich C, Sartor K (2010) Clinical functional MRI: presurgical functional neuroimaging. Springer, New York

    Google Scholar 

  27. de Souza ACS, Yehia HC, Sato M-A, Callan D (2013) Brain activity underlying auditory perceptual learning during short period training: simultaneous fMRI and EEG recording. BMC Neurosci 14:8

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ostwald D, Porcaro C, Bagshaw AP (2011) Voxel-wise information theoretic EEG-fMRI feature integration. NeuroImage 55:1270–1286

    Article  PubMed  Google Scholar 

  29. Novitskiy N, Ramautar JR, Vanderperren K, De Vos M, Mennes M, Mijovic B et al (2011) The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task. NeuroImage 54:824–835

    Article  CAS  PubMed  Google Scholar 

  30. Musso F, Brinkmeyer J, Ecker D, London MK, Thieme G, Warbrick T et al (2011) Ketamine effects on brain function–simultaneous fMRI/EEG during a visual oddball task. NeuroImage 58:508–525

    Article  CAS  PubMed  Google Scholar 

  31. Meyer P, Hoppstaedter M, Baeuchl C, Zangl M, Diener C, Flor H (2011) The N400 reflects activity in the anterior medial temporal lobe (AMTL): simultaneous EEG-fMRI reveals the neural correlates of semantic priming. Psychophysiology 48:S52

    Google Scholar 

  32. Ahmad RF, Malik AS, Kamel N, Reza F (2015) Object categories specific brain activity classification with simultaneous EEG-fMRI. In: Engineering in medicine and biology society (EMBC), 2015 37th annual international conference of the IEEE, 2015, pp 1825–1828

  33. Jorge J, van der Zwaag W, Figueiredo P (2014) EEG-fMRI integration for the study of human brain function. NeuroImage 102 Part 1:24–34

  34. Debener S, De Vos M (2011) The benefits of simultaneous EEG-fMRI for EEG analysis. Clin Neurophysiol 122:217–218

    Article  PubMed  Google Scholar 

  35. Moeller F, Siniatchkin M, Gotman J (2013) Simultaneous EEG and fMRI recordings (EEG-fMRI). fMRI 30:269–281

    Article  Google Scholar 

  36. De Martino F, Valente G, de Borst AW, Esposito F, Roebroeck A, Goebel R et al (2010) Multimodal imaging: an evaluation of univariate and multivariate methods for simultaneous EEG/fMRI. Magn Reson Imaging 28:1104–1112

    Article  PubMed  Google Scholar 

  37. Debener S, Ullsperger M, Siegel M, Engel AK (2006) *Single-trial EEG-fMRI reveals the dynamics of cognitive function. Trends Cogn Sci 10:558–563

    Article  PubMed  Google Scholar 

  38. D’Esposito M (2007) From cognitive to neural models of working memory. Philos Trans R Soc B 362:761–772

    Article  Google Scholar 

  39. Motes MA, Rypma B (2010) Working memory component processes: isolating BOLD signal changes. NeuroImage 49:1933–1941

    Article  PubMed  Google Scholar 

  40. Diamantopoulou S, Poom L, Klaver P, Talsma D (2011) Visual working memory capacity and stimulus categories: a behavioral and electrophysiological investigation. Exp Brain Res 209:501–513

    Article  PubMed  Google Scholar 

  41. Fuster JM (1988) Prefrontal cortex. Springer, Birkhäuser Boston

    Book  Google Scholar 

  42. Baddeley A (2010) Working memory. Curr Biol 20:R136–R140

    Article  CAS  PubMed  Google Scholar 

  43. Baddeley A (1992) working memory. Science 255:556–559

    Article  CAS  PubMed  Google Scholar 

  44. Rönnberg J, Rudner M, Ingvar M (2004) Neural correlates of working memory for sign language. Brain Res Cogn Brain Res 20:165–182

    Article  PubMed  Google Scholar 

  45. Olivers CNL (2008) Interactions between visual working memory and visual attention. Front Biosci J Virtual Libr 13:1182–1191

    Article  Google Scholar 

  46. Nystrom LE, Braver TS, Sabb FW, Delgado MR, Noll DC, Cohen JD (2000) Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. NeuroImage 11:424–446

    Article  CAS  PubMed  Google Scholar 

  47. D’esposito M, (ed) (2008) Neuropsyhology and behavioral neurology (Handbook of Clinical Neurology 3)

  48. Roux F, Uhlhaas PJ (2014) Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information? Trends Cogn Sci 18:16–25

    Article  PubMed  Google Scholar 

  49. Zanto TP, Chadick JZ, Gazzaley A (2014) Anticipatory alpha phase influences visual working memory performance. NeuroImage 85:794–802

    Article  PubMed  Google Scholar 

  50. Robinson KE, Livesay KL, Campbell LK, Scaduto M, Cannistraci CJ, Anderson AW et al (2010) Working memory in survivors of childhood acute lymphocytic leukemia: functional neuroimaging analyses. Pediatr Blood Cancer 54:585–590

    PubMed  PubMed Central  Google Scholar 

  51. Munneke J, Heslenfeld DJ, Theeuwes J (2010) Spatial working memory effects in early visual cortex. Brain Cogn 72:368–377

    Article  PubMed  Google Scholar 

  52. Fusar-Poli P, Broome MR, Matthiasson P, Woolley JB, Johns LC, Tabraham P et al (2010) Spatial working memory in individuals at high risk for psychosis: longitudinal fMRI study. Schizophr Res 123:45–52

    Article  CAS  PubMed  Google Scholar 

  53. van der Hiele K, Vein AA, Reijntjes RHAM, Westendorp RGJ, Bollen ELEM, van Buchem MA et al (2007) EEG correlates in the spectrum of cognitive decline. Clin Neurophysiol 118:1931–1939

    Article  PubMed  Google Scholar 

  54. Lee H, Simpson GV, Logothetis NK, Rainer G (2005) Phase locking of single neuron activity to theta oscillations during working memory in monkey extrastriate visual cortex. Neuron 45:147–156

    Article  CAS  PubMed  Google Scholar 

  55. Amin HU, Malik AS, Badruddin N, Chooi W-T (2012) Brain activation during cognitive tasks: an overview of EEG and fMRI studies. In: Biomedical engineering and sciences (IECBES) IEEE EMBS, pp 950–953

  56. Heinrichs-Graham E, Wilson TW (2015) Spatiotemporal oscillatory dynamics during the encoding and maintenance phases of a visual working memory task. Cortex 69:121–130

    Article  PubMed  Google Scholar 

  57. Lenartowicz A, Delorme A, Walshaw PD, Cho AL, Bilder RM, McGough JJ et al (2014) Electroencephalography correlates of spatial working memory deficits in attention-deficit/hyperactivity disorder: vigilance, encoding, and maintenance. J Neurosci 34:1171–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roberts BM, Hsieh L-T, Ranganath C (2013) Oscillatory activity during maintenance of spatial and temporal information in working memory. Neuropsychologia 51:349–357

    Article  PubMed  Google Scholar 

  59. Brookes MJ, Wood JR, Stevenson CM, Zumer JM, White TP, Liddle PF et al (2011) Changes in brain network activity during working memory tasks: a magnetoencephalography study. Neuroimage 55:1804–1815

    Article  PubMed  Google Scholar 

  60. Park H-D, Min B-K, Lee K-M (2010) EEG oscillations reflect visual short-term memory processes for the change detection in human faces. Neuroimage 53:629–637

    Article  PubMed  Google Scholar 

  61. Jaiswal N, Ray W, Slobounov S (2010) Encoding of visual–spatial information in working memory requires more cerebral efforts than retrieval: evidence from an EEG and virtual reality study. Brain Res 1347:80–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Khader PH, Jost K, Ranganath C, Rösler F (2010) Theta and alpha oscillations during working-memory maintenance predict successful long-term memory encoding. Neurosci Lett 468:339–343

    Article  CAS  PubMed  Google Scholar 

  63. Jensen O, Tesche CD (2002) Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci 15:1395–1399

    Article  PubMed  Google Scholar 

  64. Rahm B, Kaiser J, Unterrainer JM, Simon J, Bledowski C (2014) fMRI characterization of visual working memory recognition. NeuroImage 90:413–422

    Article  PubMed  Google Scholar 

  65. Christophel TB, Haynes J-D (2014) Decoding complex flow-field patterns in visual working memory. NeuroImage 91:43–51

    Article  PubMed  Google Scholar 

  66. Clark VP, Maisog JM, Haxby JV (1998) fMRI study of face perception and memory using random stimulus sequences. J Neurophysiol 79:3257–3265

    CAS  PubMed  Google Scholar 

  67. Manoach DS, Schlaug G, Siewert B, Darby DG, Bly BM, Benfield A et al (1997) Prefrontal cortex fMRI signal changes are correlated with working memory load. NeuroReport 8:545–549

    Article  CAS  PubMed  Google Scholar 

  68. Yancey SW, Phelps EA (2001) Functional neuroimaging and episodic memory: a perspective. J Clin Exp Neuropsychol 23:32–48

    Article  CAS  PubMed  Google Scholar 

  69. Dutta A, Shah K, Silvanto J, Soto D (2014) Neural basis of non-conscious visual working memory. NeuroImage 91:336–343

    Article  PubMed  Google Scholar 

  70. McNab F, Klingberg T (2008) Prefrontal cortex and basal ganglia control access to working memory. Nat Neurosci 11:103–107

    Article  CAS  PubMed  Google Scholar 

  71. Koshino H, Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA (2008) fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas. Cereb Cortex 18:289–300

    Article  PubMed  Google Scholar 

  72. Koshino H, Carpenter PA, Minshew NJ, Cherkassky VL, Keller TA, Just MA (2005) Functional connectivity in an fMRI working memory task in high-functioning autism. NeuroImage 24:810–821

    Article  PubMed  Google Scholar 

  73. Veltman DJ, Rombouts SA, Dolan RJ (2003) Maintenance versus manipulation in verbal working memory revisited: an fMRI study. Neuroimage 18:247–256

    Article  PubMed  Google Scholar 

  74. Henson R, Burgess N, Frith CD (2000) Recoding, storage, rehearsal and grouping in verbal short-term memory: an fMRI study. Neuropsychologia 38:426–440

    Article  CAS  PubMed  Google Scholar 

  75. Meltzer JA, Negishi M, Mayes LC, Constable RT (2007) Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects. Clin Neurophysiol 118:2419–2436

    Article  PubMed  PubMed Central  Google Scholar 

  76. Horovitz SG, Skudlarski P, Gore JC (2002) Correlations and dissociations between BOLD signal and P300 amplitude in an auditory oddball task: a parametric approach to combining fMRI and ERP. Magn Reson Imaging 20:319–325

    Article  PubMed  Google Scholar 

  77. Michels L, Bucher K, Lüchinger R, Klaver P, Martin E, Jeanmonod D, Brandeis D (2010) Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands. PloS One 5:e10298–e10298

    Article  PubMed  PubMed Central  Google Scholar 

  78. Michels L, Lüchinger R, Koenig T, Martin E, Brandeis D (2012) Developmental changes of BOLD signal correlations with global human eeg power and synchronization during working memory. PLoS One 7:e39447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang Q, Zhao X, Zhu C, Yang X, Yao L (2015) Cortical activities of single-trial P300 amplitudes modulated by memory load using simultaneous EEG-fMRI. In: SPIE medical imaging. pp 94170L–94170L-6

  80. Hoffmann S, Labrenz F, Themann M, Wascher E, Beste C (2014) Crosslinking EEG time–frequency decomposition and fMRI in error monitoring. Brain Struct Funct 219:595–605

    Article  PubMed  Google Scholar 

  81. Hoppstädter M, Baeuchl C, Diener C, Flor H, Meyer P (2015) Simultaneous EEG-fMRI reveals brain networks underlying recognition memory ERP old/new effects. NeuroImage 116:112–122

    Article  PubMed  Google Scholar 

  82. Liu Y, Bengson J, Huang H, Mangun GR, Ding M (2016) Top-down modulation of neural activity in anticipatory visual attention: control mechanisms revealed by simultaneous EEG-fMRI. Cerebral Cortex 26:517–529

  83. Rusiniak M, Lewandowska M, Wolak T, Pluta A, Milner R, Ganc M et al (2013) A modified oddball paradigm for investigation of neural correlates of attention: a simultaneous ERP-fMRI study. Magn Reson Mater Phys, Biol Med 26:511–526

    Article  Google Scholar 

  84. Sato H, Yahata N, Funane T, Takizawa R, Katura T, Atsumori H et al (2013) A NIRS–fMRI investigation of prefrontal cortex activity during a working memory task. NeuroImage 83:158–173

    Article  PubMed  Google Scholar 

  85. Walz JM, Goldman RI, Carapezza M, Muraskin J, Brown TR, Sajda P (2013) Simultaneous EEG-fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem. J Neurosci 33:19212–19222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lüchinger R, Michels L, Martin E, Brandeis D (2012) Brain state regulation during normal development: intrinsic activity fluctuations in simultaneous EEG–fMRI. NeuroImage 60:1426–1439

    Article  PubMed  Google Scholar 

  87. Warbrick T, Mobascher A, Brinkmeyer J, Musso F, Richter N, Stoecker T et al (2009) Single-trial P3 amplitude and latency informed event-related fMRI models yield different BOLD response patterns to a target detection task. NeuroImage 47:1532–1544

    Article  CAS  PubMed  Google Scholar 

  88. Scheeringa R, Petersson KM, Oostenveld R, Norris DG, Hagoort P, Bastiaansen MCM (2009) Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. NeuroImage 44:1224–1238

    Article  PubMed  Google Scholar 

  89. Mulert C, Seifert C, Leicht G, Kirsch V, Ertl M, Karch S et al (2008) Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making. NeuroImage 42:158–168

    Article  PubMed  Google Scholar 

  90. Wibral M, Turi G, Linden DEJ, Kaiser J, Bledowski C (2008) Decomposition of working memory-related scalp ERPs: crossvalidation of fMRI-constrained source analysis and ICA. Int J Psychophysiol 67:200–211

    Article  PubMed  Google Scholar 

  91. Bledowski C, Kadosh KC, Wibral M, Rahm B, Bittner RA, Hoechstetter K et al (2006) Mental chronometry of working memory retrieval: a combined functional magnetic resonance imaging and event-related potentials approach. J Neurosci 26:821–829

    Article  CAS  PubMed  Google Scholar 

  92. Calhoun V, Adali T, Pearlson G, Kiehl K (2005) Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data. Neuroimage 30:239–244

    Google Scholar 

  93. Pessoa L, Gutierrez E, Bandettini PA, Ungerleider LG (2002) Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron 35:975–987

    Article  CAS  PubMed  Google Scholar 

  94. Lindquist MA (2008) The statistical analysis of fMRI data. Stat Sci 23:439–464

    Article  Google Scholar 

  95. Perrachione TH, Ghosh SS (2013) Optimized design and analysis of sparse-sampling fMRI experiments. Front Neurosci 7:55

    Article  PubMed  PubMed Central  Google Scholar 

  96. Chong TT-J, Cunnington R, Williams MA, Kanwisher N, Mattingley JB (2008) fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Curr Biol 18:1576–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Spaniol J, Davidson PS, Kim AS, Han H, Moscovitch M, Grady CL (2009) Event-related fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation. Neuropsychologia 47:1765–1779

    Article  PubMed  Google Scholar 

  98. Huettel SA (2012) Event-related fMRI in cognition. NeuroImage 62:1152–1156

    Article  PubMed  Google Scholar 

  99. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195

    Article  CAS  PubMed  Google Scholar 

  100. Whitten TA, Hughes AM, Dickson CT, Caplan JB (2011) A better oscillation detection method robustly extracts EEG rhythms across brain state changes: the human alpha rhythm as a test case. NeuroImage 54:860–874

    Article  PubMed  Google Scholar 

  101. Zumer JM, Brookes MJ, Stevenson CM, Francis ST, Morris PG (2010) Relating BOLD fMRI and neural oscillations through convolution and optimal linear weighting. NeuroImage 49:1479–1489

    Article  PubMed  Google Scholar 

  102. Jensen O, Gelfand J, Kounios J, Lisman JE (2002) Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex (New York, N.Y.: 1991) 12:877–882

    Google Scholar 

  103. Wager T, Smith E (2003) Neuroimaging studies of working memory. Cogn Affect Behav Neurosci 3:255–274

    Article  PubMed  Google Scholar 

  104. Ritter P, Villringer A (2006) Simultaneous EEG-fMRI. Neurosci Biobehav Rev 30:823–838

    Article  PubMed  Google Scholar 

  105. Ritter P, Moosmann M, Villringer A (2009) Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Hum Brain Mapp 30:1168–1187

    Article  PubMed  Google Scholar 

  106. Mulert C, Louis L (eds) (2010) EEG—fMRI, physiological basis, technique and applications, Springer, New York

  107. Rosenkranz K, Lemieux L (2010) Present and future of simultaneous EEG-fMRI. Magn Reson Mater Phys, Biol Med 23:309–316

    Article  Google Scholar 

  108. Daunizeau J, Laufs H, Friston KJ (2010) EEG-fMRI information fusion: biophysics and data analysis. Springer, Berlin, pp 511–526

    Google Scholar 

  109. Huster RJ, Debener S, Eichele T, Herrmann CS (2012) Methods for simultaneous EEG-fMRI: an introductory review. J Neurosci 32:6053–6060

    Article  CAS  PubMed  Google Scholar 

  110. Walz JM, Goldman RI, Carapezza M, Muraskin J, Brown TR, Sajda P (2014) Simultaneous EEG-fMRI reveals a temporal cascade of task-related and default-mode activations during a simple target detection task. NeuroImage 102:229–239

    Article  PubMed  Google Scholar 

  111. Ahmad RF, Malik AS, Kamel N, Reza F, Abdul Karim AH (2015) Optimization and development of concurrent EEG-fMRI data acquisition setup for understanding neural mechanisms of brain. In: Instrumentation and measurement technology conference (I2MTC), 2015 IEEE International, pp 476–481

  112. Bayram A, Bayraktaroglu Z, Karahan E, Erdogan B, Bilgic B, Ozker M et al (2011) Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses. Clin EEG Neurosci 42:98–106

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research work has been supported by the Fundamental Research Grant Scheme (Ref: FRGS/1/2014/TK03/UTP/02/1), Ministry of High Education (MOHE), Malaysia and Graduate Assistantship scheme of Universiti Teknologi PETRONAS, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rana Fayyaz Ahmad or Aamir Saeed Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, R.F., Malik, A.S., Kamel, N. et al. Simultaneous EEG-fMRI for working memory of the human brain. Australas Phys Eng Sci Med 39, 363–378 (2016). https://doi.org/10.1007/s13246-016-0438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-016-0438-x

Keywords

Navigation