Skip to main content
Log in

Nonparametric Estimation of Spatial and Space-Time Covariance Function

  • Published:
Journal of Agricultural, Biological, and Environmental Statistics Aims and scope Submit manuscript

Abstract

Covariance structure modeling plays a key role in the spatial data analysis. Various parametric models have been developed to accommodate the idiosyncratic features of a given dataset. However, the parametric models may impose unjustified restrictions to the covariance structure and the procedure of choosing a specific model is often ad hoc. To avoid the choice of parametric forms, we propose a nonparametric covariance estimator for the spatial data, as well as its extension to the spatio-temporal data based on the class of space-time covariance models developed by Gneiting (J. Am. Stat. Assoc. 97:590–600, 2002). Our estimator is obtained via a nonparametric approximation of completely monotone functions. It is easy to implement and our simulation shows it outperforms the parametric models when there is no clear information on model specification. Two real datasets are analyzed to illustrate our approach and provide further comparison between the nonparametric estimator and parametric models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apanasovich, T. V., and Genton, M. G. (2010), “Cross-Covariance Functions for Multivariate Random Fields Based on Latent Dimensions,” Biometrika, 97, 15–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Barry, R. P., and Ver Hoef, J. M. (1996), “Blackbox Kriging: Spatial Prediction Without Specifying Variogram Models,” Journal of Agricultural, Biological, and Environmental Statistics, 1, 297–322.

    Article  MathSciNet  Google Scholar 

  • Bornn, L., Shaddick, G., and Zidek, J. V. (2012), “Modeling Nonstationary Processes Through Dimension Expansion,” Journal of the American Statistical Association, 107, 281–289.

    Article  MathSciNet  MATH  Google Scholar 

  • de Boor, C. (2001), A Practical Guide to Splines, New York: Springer.

    MATH  Google Scholar 

  • Cressie, N. (1985), “Fitting Variogram Models by Weighted Least Squares,” Mathematical Geology, 17, 563–586.

    Article  MathSciNet  Google Scholar 

  • Cressie, N. (1993), Statistics for Spatial Data (2nd ed.), New York: Wiley.

    Google Scholar 

  • Cressie, N., and Huang, H. C. (1999), “Classes of Nonseparable, Spatio-Temporal Stationary Covariance Functions,” Journal of the American Statistical Association, 94, 1330–1340.

    Article  MathSciNet  MATH  Google Scholar 

  • Diggle, P., and Ribeiro, P. J. (2007), Model-Based Geostatistics, New York: Springer.

    MATH  Google Scholar 

  • Feller, W. (1996), An Introduction to Probability Theory and Its Applications, New York: Wiley.

    Google Scholar 

  • Genton, M. G., and Gorsich, D. J. (2002), “Nonparametric Variogram and Covariogram Estimation with Fourier-Bessel Matrices,” Computational Statistics & Data Analysis, 41, 47–57.

    Article  MathSciNet  MATH  Google Scholar 

  • Genton, M. G. (2007), “Separable Approximations of Space-Time Covariance Matrices,” EnvironMetrics, 18, 681–695.

    Article  MathSciNet  Google Scholar 

  • Gneiting, T. (2002), “Nonseparable Stationary Covariance Functions for Space-Time Data,” Journal of the American Statistical Association, 97, 590–600.

    Article  MathSciNet  MATH  Google Scholar 

  • Gneiting, T., Genton, M. G., and Guttorp, P. (2007), “Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry,” in Statistical Methods for Spatio-Temporal Systems, eds. B. Finkenstadt, L. Held, and V. Isham, Boca Raton: Chapman and Hall/CRC, pp. 151–175.

    Google Scholar 

  • Guan, Y., Sherman, M., and Calvin, J. A. (2004), “A Nonparametric Test for Spatial Isotropy Using Subsampling,” Journal of the American Statistical Association, 99, 810–821.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P., Fisher, N. I., and Hoffmann, B. (1994), “On the Nonparametric Estimation of Covariance Function,” The Annals of Statistics, 22, 2115–2134.

    Article  MathSciNet  MATH  Google Scholar 

  • Haslett, J., and Raftery, A. E. (1989), “Space-Time Modelling with Long-Memory Dependence: Assessing Ireland’s Wind Power Resource,” Applied Statistics, 38, 1–50.

    Article  Google Scholar 

  • Hering, A. S., and Genton, M. G. (2011), “Comparing Spatial Predictions,” Technometrics, 53, 414–425.

    Article  MathSciNet  Google Scholar 

  • Huang, C., Hsing, T., and Cressie, N. (2011), “Nonparametric Estimation of the Variogram and Its Spectrum,” Biometrika, 98, 775–789.

    Article  MathSciNet  MATH  Google Scholar 

  • Im, H., Stein, M. L., and Zhu, Z. (2007), “Semiparametric Estimation of Spectral Density with Irregular Observations,” Journal of the American Statistical Association, 102, 726–735.

    Article  MathSciNet  MATH  Google Scholar 

  • Journel, A. G., and Huijbregts, C. J. (1978), Mining Geostatistics, London: Academic Press.

    Google Scholar 

  • Kleiber, W., and Nychka, D. (2012), “Nonstationary Modeling for Multivariate Spatial Processes,” Journal of Multivariate Analysis, 112, 76–91.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, B., and Smerdon, J. E. (2012), “Defining Spatial Comparison Metrics for Evaluation of Paleoclimatic Field Reconstructions of the Common Era,” EnvironMetrics, 23, 394–406.

    Article  MathSciNet  Google Scholar 

  • Li, B., Genton, M. G., and Sherman, M. (2007), “A Nonparametric Assessment of Properties of Space-Time Covariance Functions,” Journal of the American Statistical Association, 102, 736–744.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, B., Genton, M. G., and Sherman, M. (2008), “Testing the Covariance Structure of Multivariate Random Fields,” Biometrika, 95, 813–829.

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer, M. C. (2008), “Inference Using Shape-Restricted Regression Splines,” Annals of Applied Statistics, 2, 1013–1033.

    Article  MathSciNet  MATH  Google Scholar 

  • Reich, B., and Fuentes, M. (2012), “Nonparametric Bayesian Models for a Spatial Covariance,” Statistical Methodology, 9, 265–274.

    Article  MathSciNet  MATH  Google Scholar 

  • Schabenberger, O., and Gotway, C. A. (2005), Statistical Methods for Spatial Data Analysis, New York: Chapman and Hall.

    Google Scholar 

  • Shapiro, A., and Botha, J. D. (1991), “Variogram Fitting with a General Class of Conditionally Nonnegative Definite Functions,” Computational Statistics & Data Analysis, 11, 87–96.

    Article  MATH  Google Scholar 

  • Stein, M. L. (1999), Interpolation of Spatial Data: Some Theory for Kriging, New York: Springer.

    Book  MATH  Google Scholar 

  • Schoenberg, I. J. (1938), “Metric Spaces and Completely Monotone Functions,” Annals of Mathematics, 39, 811–841.

    Article  MathSciNet  Google Scholar 

  • Zastavnyi, V. P., and Porcu, E. (2011), “Characterization Theorems for the Gneiting Class of Space-Time Covariances,” Bernoulli, 17, 456–465.

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng, Y., Zhu, J., and Roy, A. (2010), “Nonparametric Bayesian Inference for the Spectral Density Function of a Random Field,” Biometrika, 97, 238–245.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, I., Li, B. & Wang, X. Nonparametric Estimation of Spatial and Space-Time Covariance Function. JABES 18, 611–630 (2013). https://doi.org/10.1007/s13253-013-0152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-013-0152-z

Key Words

Navigation