Skip to main content
Log in

Optimal Estimation Versus MCMC for \(\mathrm{{CO}}_{2}\) Retrievals

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

The Orbiting Carbon Observatory-2 (OCO-2) collects infrared spectra from which atmospheric properties are retrieved. OCO-2 operational data processing uses optimal estimation (OE), a state-of-the-art approach to inference of atmospheric properties from satellite measurements. One of the main advantages of the OE approach is computational efficiency, but it only characterizes the first two moments of the posterior distribution of interest. Here we obtain samples from the posterior using a Markov Chain Monte Carlo (MCMC) algorithm and compare this empirical estimate of the true posterior to the OE results. We focus on 600 simulated soundings that represent the variability of physical conditions encountered by OCO-2 between November 2014 and January 2016. We treat the two retrieval methods as ensemble and density probabilistic forecasts, where the MCMC yields an ensemble from the posterior and the OE retrieval result provide the first two moments of a normal distribution. To compare these methods, we apply both univariate and multivariate diagnostic tools and proper scoring rules. The general impression from our study is that when compared to MCMC, the OE retrieval performs reasonably well for the main quantity of interest, the column-averaged \(\mathrm{{CO}}_{2}\) concentration \(X_{\mathrm{{CO}}_{2}}\), but not for the full state vector \(\mathbf {X}\) which includes a profile of \(\mathrm{{CO}}_{2}\) concentrations over 20 pressure levels, as well as several other atmospheric properties.Supplementary materials accompanying this paper appear on-line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson, J. L. (1996), “A method for producing and evaluating probabilistic forecasts from ensemble model integrations,” Journal of Climate, 9(7), 1518–1530.

    Article  Google Scholar 

  • Battle, M., Bender, M. L., Tans, P. P., White, J. W. C., Ellis, J. T., Conway, T., and Francey, R. J. (2000), “Global Carbon Sinks and Their Variability Inferred from Atmospheric \(\text{ O }_{2}\) and \(\delta ^{13}\text{ C }\),” Science, 287(5462), 2467–2470.

    Article  Google Scholar 

  • Bösch, H., Baker, D., Connor, B., Crisp, D., and Miller, C. (2011), “Global characterization of \(\text{ CO }_{2}\) column retrievals from shortwave-infrared satellite observations of the Orbiting Carbon Observatory-2 mission,” Remote Sensing, 3(2), 270–304.

    Article  Google Scholar 

  • Bousquet, P., Peylin, P., Ciais, P., Le Quéré, C., Friedlingstein, P., and Tans, P. P. (2000), “Regional Changes in Carbon Dioxide Fluxes of Land and Oceans Since 1980,” Science, 290(5495), 1342–1346.

    Article  Google Scholar 

  • Box, G. E. P. (1980), “Sampling and Bayes Inference in Scientific Modelling and Robustness,” Journal of the Royal Statistical Society Series A, 143(4), 383–430.

    Article  MathSciNet  MATH  Google Scholar 

  • Brooks, S. P., and Gelman, A. (1998), “General Methods for Monitoring Convergence of Iterative Simulations General Methods for Monitoring Convergence of Iterative Simulations,” Journal of Computational and Graphical Statistics, 7(4), 434–455.

    MathSciNet  Google Scholar 

  • Connor, B., Bösch, H., McDuffie, J. et al. (2016), “Quantification of uncertainties in OCO-2 measurements of XCO2: Simulations and linear error analysis,” Atmospheric Measurement Techniques, 9(10), 5227–5238.

    Article  Google Scholar 

  • Cressie, N., Wang, R., Smyth, M., and Miller, C. E. (2016), “Statistical bias and variance for the regularized inverse problem: Application to space-based atmospheric \(\text{ CO }_{2}\) retrievals,” Journal of Geophysical Research: Atmospheres, 121(10), 5526–5537.

    Google Scholar 

  • Crisp, D., Atlas, R., Breon, F.-M. et al. (2004), “The Orbiting Carbon Observatory (OCO) mission,” Advances in Space Research, 34(4), 700 – 709.

    Article  Google Scholar 

  • Crisp, D., Boesch, H., Brown, L. et al. (2014), OCO - 2 Level 2 Full Physics Retrieval Algorithm Theoretical Basis, Technical Report OCO D–65488, NASA Jet Propultion Laboratory, OCO D-65488, Pasadena.

  • Crisp, D., E.Miller, C., and DeCola, P. L. (2007), “NASA Orbiting Carbon Observatory: measuring the column averaged carbon dioxide mole fraction from space,” Journal of Applied Remote Sensinghttps://doi.org/10.1117/1.2898457.

  • Crisp, D., Fisher, B. M., O’Dell, C. et al. (2012), “The ACOS \(\text{ CO }_{2}\) retrieval algorithm - Part II: Global \(X_{CO_{2}}\) data characterization,” Atmospheric Measurement Techniques, 5(4), 687–707.

    Article  Google Scholar 

  • Crisp, D., and Johnson, C. (2005), “The orbiting carbon observatory mission,” Acta Astronautica, 56(1-2), 193–197.

    Article  Google Scholar 

  • Dawid, A. P. (1984), “Statistical Theory: The Prequential Approach,” Journal of the Royal Statistical Society Series A, 147(2), 278–292.

    Article  MathSciNet  MATH  Google Scholar 

  • Diebold, F. X., Gunther, T. A., and Tay, A. S. (1998), “Evaluating Density Forecasts with Applications to Financial Risk Management,” International Economic Review, 39(4), 863–883.

    Article  Google Scholar 

  • Eldering, A., O’Dell, C. W., Wennberg, P. O. et al. (2017), “The Orbiting Carbon Observatory-2: First 18 months of science data products,” Atmospheric Measurement Techniques, 10(2), 549–563.

    Article  Google Scholar 

  • Engelen, R. J., Denning, A. S., and Gurney, K. R. (2002), “On error estimation in atmospheric CO2 inversions,” Journal of Geophysical Research: Atmospheres, 107(D14), ACL 10–1 – ACL 10–13.

  • Friedlingstein, P., Cox, P., Betts, R. et al. (2006), “Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison,” Journal of Climate, 19(14), 3337–3353.

    Article  Google Scholar 

  • Gelman, A., and Rubin (1992), “Inference from Iterative Simulation Using Multiple Sequences,” Statistical Science, 7(4), 457–511.

  • GLOBALVIEW-CO2 (2013), Cooperative Global Atmospheric Data Integration Project. 2013, updated annually. Multi-laboratory compilation of synchronized and gap-filled atmospheric carbon dioxide records for the period 1979-2012 (obspack_co2_1_GLOBALVIEW-CO2_2013_v1.0.4_2013-12-23), Technical report.

  • Gneiting, T., Balabdaoui, F., and Raftery, A. E. (2007), “Probabilistic forecasts, calibration and sharpness,” Journal of the Royal Statistical Society Series B: Statistical Methodology, 69(2), 243–268.

    Article  MathSciNet  MATH  Google Scholar 

  • Gneiting, T., and Katzfuss, M. (2014), “Probabilistic Forecasting,” Annual Review of Statistics and Its Application, 1(1), 125–151.

    Article  Google Scholar 

  • Gneiting, T., and Raftery, A. E. (2007), “Strictly Proper Scoring Rules, Prediction, and Estimation,” Journal of the American Statistical Association, 102(477), 359–378.

    Article  MathSciNet  MATH  Google Scholar 

  • Gneiting, T., Stanberry, L. I., Grimit, E. P., Held, L., and Johnson, N. A. (2008), “Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds,” Test, 17(2), 211–235.

    Article  MathSciNet  MATH  Google Scholar 

  • Gurney, K. R., Law, R. M., Denning, A. S. et al. (2003), “TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information,” Tellus, Series B: Chemical and Physical Meteorology, 55(2), 555–579.

    Article  Google Scholar 

  • Haario, H., Laine, M., Lehtinen, M., Saksman, E., and Tamminen, J. (2004), “Markov chain Monte Carlo methods for high dimensional inversion in remote sensing,” J. R. Statist. Soc. B, 66(3), 591–607.

    Article  MathSciNet  MATH  Google Scholar 

  • Haario, H., Saksman, E., and Tamminen, J. (2001), “An adaptive Metropolis algorithm,” Bernoulli, 7(2).

  • Hamill, T. M., and Colucci, S. J. (1997), “Verification of Eta RSM Short-Range Ensemble Forecasts,” Monthly Weather Review, 125, 1312–1328.

    Article  Google Scholar 

  • Hersbach, H. (2000), “Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems,” Weather and Forecasting, 15(5), 559–570.

    Article  Google Scholar 

  • Hobbs, J., Braverman, A., Cressie, N., Granat, R., and Gunson, M. (2017), “Simulation-based Uncertainty Quantification for estmating CO2 from satellite data,” SIAM/ASA Journal on Uncertainty Quantification, 5(1), 956–985.

    Article  MathSciNet  MATH  Google Scholar 

  • Jordan, A., Krueger, F., and Lerch, S. (2017), scoringRules: Scoring Rules for Parametric and Simulated Distribution Forecasts.

  • Line, M. R., Wolf, A. S., Zhang, X., Knutson, H., Kammer, J. A., Ellison, E., Deroo, P., Crisp, D., and Yung, Y. L. (2013), “A Systematic Retrieval Analysis of Secondary Eclipse Spectra. I. a Comparison of Atmospheric Retrieval Techniques,” The Astrophysical Journal, 775(2), 137.

    Article  Google Scholar 

  • López-Pintado, S., and Romo, J. (2009), “On the Concept of Depth for Functional Data,” Journal of the American Statistical Association, 104(486), 718–734.

    Article  MathSciNet  MATH  Google Scholar 

  • Matheson, J. E., and Winkler, R. L. (1976), “Scoring Rules for Continuous Probability Distributions,” Management Science, 22(10), 1087–1096.

    Article  MATH  Google Scholar 

  • Miller, C. E., Crisp, D., DeCola, P. L. et al. (2007), “Precision requirements for space-based data,” Journal of Geophysical Research: Atmospheres, 112(D10314).

  • O’Dell, C. W., Connor, B., Bösch, H. et al. (2012), “The ACOS \(\text{ CO }_{2}\) retrieval algorithm - Part 1: Description and validation against synthetic observations,” Atmospheric Measurement Techniques, 5(1), 99–121.

    Article  Google Scholar 

  • O’Hagan, A. (2003), “HSSS model criticism,” in Highly structured stochastic systems, eds. P. J. Green, N. L. Hjort, and S. Richardson, Oxford: Oxford University Press, pp. 423–444.

    Google Scholar 

  • Rienecker, M. M., Suarez, M. J., Gelaro, R. et al. (2011), “MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications,” Journal of Climate, 24(14), 3624–3648.

    Article  Google Scholar 

  • Rodgers, C. D. (2000), Inverse Methods for Atmospheric Sounding World Scientific.

    Book  MATH  Google Scholar 

  • Schuh, A. E., Denning, A. S., Corbin, K. D., Baker, I. T., Uliasz, M., Parazoo, N., Andrews, A. E., and Worthy, D. E. J. (2010), “A regional high-resolution carbon flux inversion of North America for 2004,” Biogeosciences, 7(5), 1625–1644.

    Article  Google Scholar 

  • Sun, Y., and Genton, M. G. (2011), “Functional Boxplots,” Journal of Computational and Graphical Statistics, 20(2), 316–334.

    Article  MathSciNet  Google Scholar 

  • —(2012), “Adjusted functional boxplots for spatio-temporal data visualization and outlier detection,” Environmetrics, 23(1), 54–64.

  • Sun, Y., Genton, M. G., and Nychka, D. W. (2012), “Exact fast computation of band depth for large functional datasets: How quickly can one million curves be ranked?,” Stat, 1(1), 68–74.

    Article  Google Scholar 

  • Talagrand, O., Vautard, R., and Strauss, B. (1997), Evaluation of probabilistic prediction systems, in Proceedings of a workshop held at ECMWF on predictability, 2022 October 1997. European Centre for Medium- Range Weather Forecasts, pp. 1–25.

  • Thompson, D. R., Benner, D. C., Brown, L. R. et al. (2012), “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2mission,” Journal of Quantitative Spectroscopy & Radiative Transfer, 113, 2265–2276.

    Article  Google Scholar 

  • Thorarinsdottir, T. L., Scheuerer, M., and Heinz, C. (2016), “Assessing the calibration of high-dimensional ensemble forecasts using rank histograms,” Journal of Computational and Graphical Statistics, 25(1), 105–122.

    Article  MathSciNet  Google Scholar 

  • Tukiainen, S., Railo, J., Laine, M., Hakkarainen, J., Kivi, R., Heikkinen, P., Chen, H., and Tamminen, J. (2016), “Retrieval of atmospheric CH4 profiles from Fourier transform infrared data using dimension reduction and MCMC,” Journal of Geophysical Research: Atmospheres, 121(17), 10,312–10,327.

    Google Scholar 

  • Van Der Maaten, L. J. P., and Hinton, G. E. (2008), “Visualizing high-dimensional data using t-sne,” Journal of Machine Learning Research, 9, 2579–2605.

    MATH  Google Scholar 

  • Wang, Y., Jiang, X., Yu, B., and Jiang, M. (2013), “A Hierarchical Bayesian Approach for Aerosol Retrieval Using MISR Data,” Journal of the American Statistical Association, 108(502), 483–493.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Support was provided by the Orbiting Carbon Observatory-2 (OCO-2) mission. The authors thank Dr. Michael Gunson, Dr. Annmarie Eldering, and Dr. Noel Cressie for insightful discussions, support, and advice during the development of this work. Furthermore, we thank the Editor, Associate Editor and an anonymous reviewer for very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Brynjarsdottir.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (R 7 KB)

Supplementary material 2 (R 8 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brynjarsdottir, J., Hobbs, J., Braverman, A. et al. Optimal Estimation Versus MCMC for \(\mathrm{{CO}}_{2}\) Retrievals. JABES 23, 297–316 (2018). https://doi.org/10.1007/s13253-018-0319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-018-0319-8

Keywords

Navigation