Skip to main content
Log in

Genomic signatures of high-altitude adaptation in Ethiopian sheep populations

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Ethiopian sheep populations such as Arsi-Bale, Horro and Adilo (long fat-tailed, LFT) inhabit mid to high-altitude areas; and Menz sheep (MZ, short fat-tailed) are adapted to cool sub-alpine environments. In contrast, Blackhead Somali sheep (BHS, fat-rumped) thrive well in arid and semi-arid areas characterized by high temperature and low precipitation. The genomic investigation of Ethiopian sheep populations may help to identify genes and biological pathways enable to adapt to the different ecological conditions.

Objective

To uncover genomic regions and genes showing evidence of positive selection for altitude adaptation in Ethiopian sheep populations.

Methods

A total of 72 animals inhabiting high-versus low-altitude environments were genotyped on an Ovine Infinium HD array (~ 600 K). Pairwise genetic differentiation (Fst) was calculated in sliding windows of 20 SNPs and the upper 1% smoothed Fst values were considered to represent positive selection signatures. Genes within < 25 kb of the most differentiated SNPs were considered as selection candidates.

Results

Signatures of selection were detected in genes known to be associated high with altitude adaptation in MZ–BHS pair comparison (PPP1R12A, RELN, PARP2, and DNAH9) and in LFT–BHS pair comparison (VAV3, MSRB3,EIF2AK4, MET, and TACR1). The candidate genes (MITF, FGF5, MTOR, TRHDE, and TUBB3) associated with altitude adaptation and shared between the MZ–BHS and LTF–BHS pair comparisons were also detected as under selection. Further functional analyses reveal that the candidate genes were involved in biological processes and pathways relevant to adaptation under extreme altitudes, including respiratory system development and smoothened signaling pathway.

Conclusion

The results of the present study could aid in-depth understanding and exploitation of the underlying genetic mechanisms for sheep and other livestock species adaptation to high-altitude environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu-Remaileh M, Aqeilan RI (2014) Tumor suppressor WWOX regulates glucose metabolism via HIF1alpha modulation. Cell Death Differ 21:1805–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agathon A, Thisse C, Thisse B (2003) The molecular nature of the zebrafish tail organizer. Nature 424:448–452

    Article  CAS  PubMed  Google Scholar 

  • Ai H, Yang B, Li J, Xie X, Chen H, Ren J (2014) Population history and genomic signatures for high-altitude adaptation in Tibetan pigs. BMC Genom 15:834

    Article  Google Scholar 

  • Akey JM, Ruhe AL, Akey DT, Wong AK, Connelly CF, Madeoy JR, Neff MW, (2010) Tracking footprints of artificial selection in the dog genome. Proc Natl Acad Sci 107:1160–1165

    Article  Google Scholar 

  • Ali SO, Khan FA, Galindo-Campos MA, Yélamos J (2016) Understanding specific functions of PARP-2: new lessons for cancer therapy. Am J Cancer Res 6:1842–1863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alkorta-Aranburu G, Beall CM, Witonsky DB, Gebremedhin A, Pritchard JK, Di Rienzo A (2012) The genetic architecture of adaptations to high altitude in Ethiopia. PLoS Genet 8:e1003110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, Li C, Li JC, Liang Y, McCormack M, Montgomery HE, Pan H, Robbins PA, Shianna KV, Tam SC, Tsering N, Veeramah KR, Wang W, Wangdui P, Weale ME, Xu Y, Xu Z, Yang L, Zaman MJ, Zeng C, Zhang L, Zhang X, Zhaxi P, Zheng YT (2010) Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci 107:11459–11464

    Article  PubMed  PubMed Central  Google Scholar 

  • Bigham AW, Lee FS (2014) Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes Dev 28:2189–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buga AM, Scholz CJ, Kumar S, Herndon JG, Alexandru D, Cojocaru GR (2012) Identification of new therapeutic targets by genome-wide analysis of gene expression in the ipsilateral cortex of aged rats after stroke. PLoS One 7:e50985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadieu E, Neff MW, Quignon P, Walsh K, Chase K, Parker HG, Vonholdt BM, Rhue A, Boyko A, Byers A, Wong A, Mosher DS, Elkahloun AG, Spady TC, André C, Lark KG, Cargill M, Bustamante CD, Wayne RK, Ostrander EA (2009) Coat variation in the domestic dog is governed by variants in three genes. Science 326:150–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Q, Qian X, Lang Y (2013) Genome sequence of ground tit Pseudopodoces humilis and its adaptation to high altitude. Genome Biol 14:R29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardona A, Pagani L, Antao T (2014) Genome-wide analysis of cold adaptation in indigenous Siberian populations. PLoS One 9:e98076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark JD, Williams M (1978) Recent archaeological research in southeastern Ethiopia (1974-1975): some preliminary results. Annals d'Ethiopie 11:19–44

    Article  Google Scholar 

  • Dada LA, Novoa E, Lecuona E, Sun H, Sznajder JI (2007) Role of the small GTPase RhoA in the hypoxia-induced decrease of plasma membrane Na, K-ATPase in A549 cells. J Cell Sci 120:2214–2222

    Article  CAS  PubMed  Google Scholar 

  • De Falco S (2012) The discovery of placenta growth factor and its biological activity. Exp Mol Med 44:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng J, Harding HP, Raught B (2002) Activation of GCN2 in UV-irradiated cells inhibits translation. Curr Biol 12:1279–1286

    Article  CAS  PubMed  Google Scholar 

  • Dierks C, Momke S, Philipp U, Distl O (2013) Allelic heterogeneity of FGF5 mutations cause the long-hair phenotype in dogs. Anim Genet 44:425–431

    Article  CAS  PubMed  Google Scholar 

  • Dominick G, Bowman J, Li X, Miller RA, Garcia GG (2017) mTOR: regulates the expression of DNA damage response enzymes in long-lived snell dwarf, GHRKO, and PAPPA-KO mice. Aging Cell 16:52–60

    Article  CAS  PubMed  Google Scholar 

  • Donato MD, Fanelli M, Mariani M, Raspaglio G, Pandya D, He S, Fiedler P, Petrrillo M, Scambia G, Ferlini C (2015) Nek6 and Hif-1α cooperate with the cytoskeletal gateway of drug resistance to drive outcome in serous ovarian cancer. Am J Cancer Res 5:1862–1877

    PubMed  PubMed Central  Google Scholar 

  • Dong K, Yao N, Pu Y, He X, Zhao Q, Luan Y, Guan W, Rao S, Ma Y (2014) Genomic scan reveals loci under altitude adaptation in Tibetan and Dahe pigs. PLoS One 9:e110520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drögemüller C, Rüfenacht S, Wichert B, Leeb T (2007) Mutations within the FGF5 gene are associated with hair length in cats. Anim Genet 38:218–221

    Article  CAS  PubMed  Google Scholar 

  • Edea Z, Dessie T, Dadi H, Do KT, Kim KS (2017) Genetic diversity and population structure of Ethiopian sheep populations revealed by high-density SNP markers. Front Genet 8:218

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandes-Silva H, Correia-Pinto J, Moura SR (2017) Canonical sonic hedgehog signaling in early lung development. J Dev Biol 5:3

    Article  CAS  PubMed Central  Google Scholar 

  • Fontanesi L, Beretti F, Riggio V (2009) Missense and nonsense mutations in melanocortin 1 receptor (MC1R) gene of different goat breeds: association with red and black coat colour phenotypes but with unexpected evidences. BMC Genet 10:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco-Montoya ML, Boucherat O, Thibault C, Chailley-Heu B, Incitti R, Delacourt C, Bourbon JR (2011) Profiling target genes of FGF18 in the postnatal mouse lung: possible relevance for alveolar development. Physiol Genom 43:1226–12240

    Article  CAS  Google Scholar 

  • Giordano FJ, Ping P, McKirnan MD, Nozaki S, Demaria AN, Dillmann WH, Mathieu-Costello O, Hammond HK (1996) Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 2:534–539

    Article  CAS  PubMed  Google Scholar 

  • Gizaw S, Komen H, Hanotte O, Van Arendonk J (2008) Indigenous sheep resources of Ethiopia: types, production systems and farmers preferences. Anim Genet Resour 43:25–39

    Article  Google Scholar 

  • Gou X, Wang Z, Li N, Qiu F, Xu Z, Yan D, Yang S, Jia J, Kong X, Wei Z, Lu S, Lian L, Wu C, Wang X, Li G, Ma T, Jiang Q, Zhao X, Yang J, Liu B, Wei D, Li H, Yang J, Yan Y, Zhao G, Dong X, Li M, Deng W, Leng J, Wei C, Wang C, Mao H, Zhang H, Ding G, Li Y (2014) Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Res 24:1308–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han JI, Yang M, Guo TT, Yue YJ, Liu JB, Niu CE, Wang CF, Yang BH (2015) Molecular characterization of two candidate genes associated with coat color in Tibetan sheep (Ovis arise). J Integr Agric 14:1390–1397

    Article  CAS  Google Scholar 

  • Hauswirth R, Haase B, Blatter M, Brooks SA, Burger D, Drögemüller C, Gerber V, Henke D, Janda J, Jude R (2012) Mutations in MITF and PAX3 cause “splashed white” and other white spotting phenotypes in horses. PLoS Genet 8:e1002653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes BJ, Pryce J, Chamberlain AJ, Bowman PJ, Goddard ME (2010) Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genet 6:e1001139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hébert JM, Rosenquist T, Gotz J, Martin GR (1994) FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell 78:1017–1025

    Article  PubMed  Google Scholar 

  • Hookham MB, Ali IHA, O’Neill CL, Hackett E, Lambe MH, Schmidt T, Medina RJ, Chamney S, Rao B, McLoone E, Sweet D, Stitt AW, Brazil DP et al (2016) Hypoxia-induced responses by endothelial colony-forming cells are modulated by placental growth factor. Stem Cell Res Ther 7:173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou L, Pavan WJ (2008) Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf? Cell Res 18:1163

    Article  CAS  PubMed  Google Scholar 

  • Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087

    Article  CAS  PubMed  Google Scholar 

  • Kijas JM, Wales R, Tornsten A, Chardon P, Moller M, Andersson L (1998) Melanocortin receptor 1 (MC1R) mutations and coat color in pigs. Genetics 150:1177–1185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kilic-Eren M, Boylu T, Tabor V (2013) Targeting PI3K/Akt represses hypoxia inducible factor-1α activation and sensitizes rhabdomyosarcoma and Ewing’s sarcoma cells for apoptosis. Cancer Cell Int 13:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knaup KX, Jozefowski K, Schmidt R, Bernhardt WM, Weidemann A, Juergensen JS, Warnecke C, Eckardt KU, Wiesener MS (2009) Mutual regulation of hypoxia-inducible factor and mammalian target of rapamycin as a function of oxygen availability. Mol Cancer Res 7:88–98

    Article  CAS  PubMed  Google Scholar 

  • Land SC, Tee AR (2007) Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem 282:20534–20543

    Article  CAS  PubMed  Google Scholar 

  • Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL (2001) HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21:3995–4004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leta S, Mesele F (2014) Spatial analysis of cattle and shoat population in Ethiopia: growth trend, distribution and market access. SpringerPlus 3:310

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, László C, Liu Y, Liu W, Chen X, Evans SC, Wu S (2010) Regulation of G1 arrest and apoptosis in hypoxia by PERK and GCN2-mediated eIF2α phosphorylation. Neoplasia 12:61-IN6

    Article  CAS  Google Scholar 

  • Marklund L, Moller MJ, Sandberg K, Andersson L (1996) A missense mutation in the gene for melanocyte-stimulating hormone receptor (MC1R) is associated with the chestnut coat color in horses. Mamm Genome 7:895–899

    Article  CAS  PubMed  Google Scholar 

  • Mishra OP, Akhter W, Ashraf QM, Delivoria-Papadopoulos M (2003) Hypoxia-induced modification of poly (ADP-ribose) polymerase and dna polymerase beta activity in cerebral cortical nuclei of newborn piglets: role of nitric oxide. Neuroscience 119:1023–1032

    Article  CAS  PubMed  Google Scholar 

  • Mizuno S, Iijima S, Okano T, Kajiwara N, Kunita S, Sugiyama F, Yagami K (2011) Retrotransposon-mediated Fgf5(go-Utr) mutant mice with long pelage hair. Exp Anim 60:161–167

    Article  CAS  PubMed  Google Scholar 

  • Moradi MH, Nejati-Javaremi A, Moradi-Shahrbabak M, Dodds KG, McEwan JC (2012) Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet 13:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morikawa T, Kajimura M, Nakamura T (2012) Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proc Natl Acad Sci USA 109:1293–1298

    Article  PubMed  PubMed Central  Google Scholar 

  • Mudie S, Bandarra D, Batie M, Biddlestone J, Moniz S, Ortmann B, Shmakova A, Rocha S (2014) PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia. Cell Cycle 13:3878–3891

    Article  CAS  PubMed  Google Scholar 

  • Muigai AWT, Hanotte O (2013) The origin of African sheep: archaeological and genetic perspectives. Afr Archaeol Rev 30:39–50

    Article  Google Scholar 

  • Nilsson MB, Zage PE, Zeng L, Xu L, Cascone T, Wu HK, Saigal B, Zweidler-McKay PA, Heymach JV (2010) Multiple receptor tyrosine kinases regulate HIF-1alpha and HIF-2alpha in normoxia and hypoxia in neuroblastoma: implications for antiangiogenic mechanisms of multikinase inhibitors. Oncogene 29:2938–2949

    Article  CAS  PubMed  Google Scholar 

  • Pires IM, Bencokova Z, Milani M, Folkes LK, Li JL, Stratford MR, Harris AL, Hammond EM (2010) Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability. Cancer Res 70:925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourlis AF (2011) A review of morphological characteristics relating to the production and reproduction of fat-tailed sheep breeds. Trop Anim Health Prod 43:1267–1287

    Article  PubMed  Google Scholar 

  • Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684

    Article  CAS  PubMed  Google Scholar 

  • Qanbari S, Pausch H, Jansen S, Somel M, Strom TM, Fries R, Nielsen R, Simianer H (2014) Classic selective sweeps revealed by massive sequencing in cattle. PLoS Genet 10:e1004148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu Y, Zhao H, Han N, Zhou G, Song G, Gao B, Tian S, Zhang J, Zhang R, Meng X, Zhang Y, Zhang Y, Zhu X, Wang W, Lambert D, Ericson PG, Subramanian S, Yeung C, Zhu H, Jiang Z, Li R, Lei F (2013) Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat Commun 4:2071

    Article  CAS  PubMed  Google Scholar 

  • Quevedo C, Sauzeau V, Menacho-Márquez M, Castro-Castro A, Bustelo XR, Gutkind JS (2010) Vav3-deficient mice exhibit a transient delay in cerebellar development. Mol Biol Cell 21:1125–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramey HR, Decker JE, McKay SD, Rolf MM, Schnabel RD, Taylor JF (2013) Detection of selective sweeps in cattle using genome-wide SNP data. BMC Genom 14:382

    Article  CAS  Google Scholar 

  • Roskoski R Jr (2008) VEGF receptor protein–tyrosine kinases: structure and regulation. Biochem Biophys Res Commun 375:287–291

    Article  CAS  PubMed  Google Scholar 

  • Sazzini M, Gnecchi Ruscone GA, Giuliani C, Sarno S, Quagliariello A, De Fanti S, Boattini A, Gentilini D, Fiorito G, Catanoso M, Boiardi L, Croci S, Macchioni P, Mantovani V, Di Blasio AM, Matullo G, Salvarani C, Franceschi C, Pettener D, Garagnani P, Luiselli D (2016) Complex interplay between neutral and adaptive evolution shaped differential genomic background and disease susceptibility along the Italian Peninsula. Sci Rep 6:32513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheinfeldt LB, Soi S, Thompson S, Ranciaro A, Woldemeskel D, Beggs W, Lambert C, Jarvis JP, Abate D, Belay G, Tishkoff SA (2012) Genetic adaptation to high altitude in the Ethiopian highlands. Genome Biol 13:R1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, Prchal JT, Ge R (2010) Genetic evidence for high-altitude adaptation in Tibet. Science 329:72

    Article  CAS  PubMed  Google Scholar 

  • Tibbo M (2006) Productivity and health of indigenous sheep breeds and crossbreds in the central Ethiopian highlands. Doctoral thesis, Swedish University of Agricultural Sciences, Uppsala

  • Våge DI, Klungland H, Lu D, Cone RD (1999) Molecular and pharmacological characterization of dominant black coat color in sheep. Mamm Genome 10:39–43

    Article  PubMed  Google Scholar 

  • Vaysse A, Ratnakumar A, Derrien T et al (2011) Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet 7:e1002316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walden H, Deans AJ (2014) The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder. Annu Rev Biophys 43:257–278

    Article  CAS  PubMed  Google Scholar 

  • Wang MS, Li Y, Peng MS et al (2015) Genomic analyses reveal potential independent adaptation to high altitude in Tibetan chickens. Mol Biol Evol 32:1880–1889

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Wang H, Liu G et al (2016) Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Sci Rep 6:26770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Weir BS, Cardon LR, Anderson AD, Nielsen DM, Hill WG (2005) Measures of human population structure show heterogeneity among genomic regions. Genome Res 15:1468–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RT (2011) Populations and production of fat-tailed and fat-rumped sheep in the Horn of Africa. Trop Anim Health Prod 43:1419–1425

    Article  PubMed  Google Scholar 

  • Wu H, Liu YH, Wang GD, Yang CT, Otecko NO, Liu F, Wu SF, Wang L, Yu L, Zhang YP (2016) Identifying molecular signatures of hypoxia adaptation from sex chromosomes: a case for Tibetan Mastiff based on analyses of X chromosome. Sci Rep 6:35004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusnizar Y, Wilbe M, Herlino AO et al (2015) Microphthalmia-associated transcription factor mutations are associated with white-spotted coat color in swamp buffalo. Anim Genet 46:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Zhang X, Kang K, Chen J, Wu Z, Huang J, Lu W, Chen Y, Zhang J, Wang Z, Zhai Y, Qu J, Ramchandran R, Raj JU, Wang J, Gou D (2016) MicroRNA-223 attenuates hypoxia-induced vascular remodeling by targeting RhoB/MLC2 in pulmonary arterial smooth muscle cells. Sci Rep 6:24900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liang J, Zhang L, Wang L, Liu X, Yan H, Zhao K, Shi H, Zhang T, Li N, Pu L, Wang L (2015) Porcine methionine sulfoxide reductase B3: molecular cloning, tissue-specific expression profiles, and polymorphisms associated with ear size in Sus scrofa. J Anim Sci Biotechnol 6:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Qiangba Y, Shang P, Lu Y, Yang Y, Wang Z, Zhang H (2016) Gene expression of vascular endothelial growth factor A and hypoxic adaptation in Tibetan pig. J Anim Sci Biotechnol 7:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant from the National Research Foundation of Korea (no. NRF-2017R1A2B1008883). We would like to thank the International Livestock Research Center, Addis Ababa, Ethiopia, for providing logistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwan-Suk Kim.

Ethics declarations

Conflict of interest

All authors (1) Zewdu Edea, (2) Hailu Dadi, (3) Tadelle Dessie, (4) Kwan-Suk Kim declare that they have no conflict of interest.

Ethical approval

The research was conducted in the absence of any ethical issue on animal research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13258_2019_820_MOESM1_ESM.xlsx

Signatures of selection within the candidate regions identified in the comparison of Menz versus Blackhead Somali sheep (XLSX 20 kb)

13258_2019_820_MOESM2_ESM.xlsx

Signatures of selection within the candidate regions identified in the comparison of long fat-tailed sheep versus Blackhead Somali sheep (XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edea, Z., Dadi, H., Dessie, T. et al. Genomic signatures of high-altitude adaptation in Ethiopian sheep populations. Genes Genom 41, 973–981 (2019). https://doi.org/10.1007/s13258-019-00820-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-019-00820-y

Keywords

Navigation