Skip to main content
Log in

Immunotoxicity of metal oxide nanoparticle: zinc oxide

  • Review Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) are characterized by notable physico-chemical features such as size, surface charge, porosity, and shape when compared to their bulk counterparts. Recent studies on NPs have drawn tremendous attention owing to their accelerating demands and applications in diverse sectors such as industry, medicine, agriculture and energy production. However, the novel properties of nanoparticles hold uncertainty in terms of safety, specifically during interaction with the cell, DNA, protein, lipid and cellular membrane. Even though nanotechnology holds considerable promise, the novel properties of NPs may pose detriment to the biological system. While NPs interact with the immune system of host, their immunotoxicity (toxicity of the NPs to the immune system) still remain unexplored. Furthermore, NPs can pose danger to the immune system, which can be categorized as immunostimulation and/or immunosuppression. Despite this divergent category, there is no international guideline for immunotoxicity assessment of NPs. Existing parameters for toxicity evaluation are designed for toxic substances, not specific for NPs. This review will focus on the immunotoxicity of metal oxide nanoparticles in general as well as nano zinc oxide in particular, followed by the limitations of the existing parameters in gauging immunotoxicity and the new aspect of nanoimmunotoxicity based on current techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nel, A., Xia, T., Madler, L., & Li, N. Toxic potential of materials at the nanolevel. Science 311:622–627 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. Shahbazi, M. A. et al. The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials 34:7776–7789, doi:10.1016/j.biomaterials.2013.06.052 (2013).

    Article  PubMed  CAS  Google Scholar 

  3. Xia, T. et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano letters 6:1794–1807, doi:10.1021/nl061025k (2006).

    Article  PubMed  CAS  Google Scholar 

  4. Xia, T., Kovochich, M., & Nel, A. The role of reactive oxygen species and oxidative stress in mediating particulate matter injury. Clin Occup Environ Med 5:817–836, doi:10.1016/j.coem.2006.07.005 (2006).

    PubMed  Google Scholar 

  5. Gojova, A. et al. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115:403–409, doi:10.1289/ehp.8497 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Xia, T. et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS nano 2:2121–2134, doi:10.1021/nn800511k (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. MacNee, W., & Donaldson, K. Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. Eur Respir J Suppl 40:47s–51s (2003).

    Article  PubMed  CAS  Google Scholar 

  8. Rasmussen, J. W., Martinez, E., Louka, P., & Wingett, D. G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7:1063–1077, doi:10.1517/17425247.2010.502560 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Lanone, S., & Boczkowski, J. Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6:651–663 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. Kim, C. S. et al. Immunotoxicity of zinc oxide nanoparticles with different size and electrostatic charge. Int J Nanomedicine, doi:10.1517/17425247.2010.502 560 (In Press 2014).

    Google Scholar 

  11. Frohlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591, doi:10.2147/ijn.s36111 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Landsiedel, R. et al. Testing metal-oxide nanomaterials for human safety. Adv Mater (Deerfield Beach, Fla.) 22:2601–2627, doi:10.1002/adma.200902658 (2010).

    Article  CAS  Google Scholar 

  13. Kroll, A., Pillukat, M. H., Hahn, D., & Schnekenburger, J. Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biophar 72:370–377, doi:10.1016/j.ejpb.2008.08.009 (2009).

    Article  CAS  Google Scholar 

  14. Casey, A. et al. Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells. Toxicol Lett 179:78–84, doi:10.1016/j.toxlet.2008.04.006 (2008).

    Article  PubMed  CAS  Google Scholar 

  15. Monteiro-Riviere, N. A., & Inman, A. O. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44:1070–1078 (2006).

    Article  CAS  Google Scholar 

  16. Worle-Knirsch, J. M., Pulskamp, K., & Krug, H. F. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Letters 6:1261–1268, doi:10.1021/nl060177c (2006).

    Article  PubMed  CAS  Google Scholar 

  17. Sayes, C. M., Marchione, A. A., Reed, K. L., & Warheit, D. B. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Letters 7:2399–2406, doi:10.1021/nl0710710 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. Meulenkamp, E. A. Size Dependence of the Dissolution of ZnO Nanoparticles. The Journal of Physical Chemistry B 102:7764–7769, doi:10.1021/jp982305u (1998).

    Article  CAS  Google Scholar 

  19. Veranth, J. M., Kaser, E. G., Veranth, M. M., Koch, M., & Yost, G. S. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol 4:2, doi:10.1186/1743-8977-4-2 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ratanachoo, K., Gascoyne, P. R., & Ruchirawat, M. Detection of cellular responses to toxicants by dielectrophoresis. Biochim Biophys Acta 1564:449–458 (2002).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Ponti, J. et al. Comparison of impedance-based sensors for cell adhesion monitoring and in vitro methods for detecting cytotoxicity induced by chemicals. Altern Lab Anim 34:515–525 (2006).

    PubMed  CAS  Google Scholar 

  22. Gamucci, O., Bertero, A., Gagliardi, M., & Bardi, G. Biomedical Nanoparticles: Overview of Their Surface Immune-Compatibility. Coatings 4:139–159 (2014).

    Article  CAS  Google Scholar 

  23. Dobrovolskaia, M. A., & McNeil, S. E. Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478, doi:10.1038/nnano.2007.223 (2007).

    Article  PubMed  CAS  Google Scholar 

  24. Gessner, A., Lieske, A., Paulke, B., & Muller, R. Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 54:165–170 (2002).

    Article  PubMed  CAS  Google Scholar 

  25. Peracchia, M. T. et al. Visualization of in vitro proteinrejecting properties of PEGylated stealth polycyanoacrylate nanoparticles. Biomaterials 20:1269–1275 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. Luck, M., Paulke, B. R., Schroder, W., Blunk, T., & Muller, R. H. Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J Biomed Mater Res 39:478–485 (1998)

    Article  PubMed  CAS  Google Scholar 

  27. Koutsoukos, P. G., Mumme-Young, C. A., Norde, W., & Lyklema, J. Effect of the nature of the substrate on the adsorption of human plasma albumin. Colloids and Surfaces 5:93–104, doi:http://dx.doi.org/10.1016/0166-6622(82)80065-6 (1982).

    Article  CAS  Google Scholar 

  28. Kapur, R., Lilien, J., & Black, J. Field-dependent fibroblast orientation on charged surfaces is independent of polarity and adsorbed serum proteins. Biomaterials 14:854–860 (1993).

    Article  PubMed  CAS  Google Scholar 

  29. Hoffman, A. J., Carraway, E. R., & Hoffmann, M. R. Photocatalytic Production of H2O2 and Organic Peroxides on Quantum-Sized Semiconductor Colloids. Environ Sci Technol 28:776–785, doi:10.1021/es00054a006 (1994).

    Article  PubMed  CAS  Google Scholar 

  30. Yu, T., Greish, K., McGill, L. D., Ray, A., & Ghandehari, H. Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: their vasculature effect and tolerance threshold. ACS nano 6:2289–2301, doi:10.1021/nn2043803 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. van Zijverden, M., & Granum, B. Adjuvant activity of particulate pollutants in different mouse models. Toxicology 152:69–77 (2000).

    Article  PubMed  Google Scholar 

  32. Tomita, Y., Rikimaru-Kaneko, A., Hashiguchi, K., & Shirotake, S. Effect of anionic and cationic n-butylcyanoacrylate nanoparticles on NO and cytokine production in Raw264.7 cells. Immunopharmacol Immunotoxicol 33:730–737, doi:10.3109/08923973.2011.565345 (2011).

    Article  PubMed  CAS  Google Scholar 

  33. Kim, J. H. et al. Immunotoxicity of silicon dioxide nanoparticles with different sizes and electrostatic charge. Int J Nanomedicine (In Press 2014).

    Google Scholar 

  34. Kim, S. Y., Nishioka, M., & Taya, M. Promoted proliferation of an SOD-deficient mutant of Escherichia coli under oxidative stress induced by photoexcited TiO2. FEMS Microbiol Lett 236:109–114, doi:10.1016/j.femsle.2004.05.030 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. Isakovic, A. et al. Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol Sci 91:173–183, doi:10.1093/toxsci/kfj127 (2006).

    Article  PubMed  CAS  Google Scholar 

  36. Yeber, M. C., Rodriguez, J., Freer, J., Duran, N., & Mansilla, H. D. Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere 41:1193–1197 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. Fubini, B., & Hubbard, A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med 34:1507–1516 (2003).

    Article  PubMed  CAS  Google Scholar 

  38. Foley, S. et al. Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294:116–119, doi:10.1016/s0006-291x(02)00445-x (2002).

    Article  PubMed  CAS  Google Scholar 

  39. Li, N. et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Savic, R., Luo, L., Eisenberg, A., & Maysinger, D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300:615–618, doi:10.1126/science.1078192 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. De Berardis, B. et al. Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Appl Pharmacol 246:116–127, doi:10.1016/j.taap.2010.04.012 (2010).

    Article  PubMed  Google Scholar 

  42. Zhang, J. et al. Toxic effect of different ZnO particles on mouse alveolar macrophages. J Hazard Mater 219–220:148–155, doi:10.1016/j.jhazmat.2012.03.069 (2012).

    Article  PubMed  Google Scholar 

  43. Tait, S. W., & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632, doi:10.1038/nrm2952 (2010).

    Article  PubMed  CAS  Google Scholar 

  44. Fulda, S., & Debatin, K. M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811, doi:10.1038/sj.onc.1209608 (2006).

    Article  PubMed  CAS  Google Scholar 

  45. Amoah-Apraku, B. et al. NF-kappa B and transcriptional control of renal epithelial-inducible nitric oxide synthase. Kidney Int 48:674–682 (1995).

    Article  PubMed  CAS  Google Scholar 

  46. Sun, B., Wang, X., Ji, Z., Li, R., & Xia, T. NLRP3 inflammasome activation induced by engineered nanomaterials. Small (Weinheim an der Bergstrasse, Germany) 9:1595–1607, doi:10.1002/smll.201201962 (2013).

    Article  CAS  Google Scholar 

  47. Peeters, P. M., Perkins, T. N., Wouters, E. F., Mossman, B. T., & Reynaert, N. L. Silica induces NLRP3 inflammasome activation in human lung epithelial cells. Part Fibre Toxicol 10:3, doi:10.1186/1743-8977-10-3 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Ki Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignacio, R.M.C., Kim, CS. & Kim, SK. Immunotoxicity of metal oxide nanoparticle: zinc oxide. Mol. Cell. Toxicol. 10, 237–244 (2014). https://doi.org/10.1007/s13273-014-0026-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-014-0026-7

Keywords

Navigation