Skip to main content

Advertisement

Log in

Overexpression of stathmin 1 confers an independent prognostic indicator in nasopharyngeal carcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Data mining on public domain identified that stathmin 1 (STMN1) transcript was significantly higher expressed in nasopharyngeal carcinoma (NPC). Also known as the oncoprotein 18, STMN1 performs an important function in regulating rapid microtubule remodeling of the cytoskeleton in response to the cellular conditions. Immunoexpression of STMN1 was retrospectively assessed in biopsies of 124 consecutive NPC patients without initial distant metastasis and treated with consistent guidelines. The outcome was correlated with clinicopathological features and patient survivals. Results indicated that high STMN1 expressions (50 %) were correlated with advanced age (p = 0.027), higher T stage (p = 0.003), and overall clinical stage (p = 0.006) by the 7th American Joint Committee of Cancer Staging. In multivariate analyses, high STMN1 expression emerged as an independent prognosticator for worse disease-specific survival (p = 0.001), distal metastasis-free survival (p = 0.003), and local recurrence-free survival (p = 0.006). Exogenous expression of E2F transcription factor 1 (E2F1) or/and its dimeric partner, transcription factor Dp-1 (TFDP1), notably induced the STMN1 protein level in a NPC-derived cell line, TW01. Accordingly, high STMN1 protein level is commonly associated with adverse prognosticators and confers tumor aggressiveness in patients with NPC, and its upregulation might be attributed to E2F1 and/or TFDP1 transactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lo KW, To KF, Huang DP. Focus on nasopharyngeal carcinoma. Cancer Cell. 2004;5:423–8.

    Article  PubMed  CAS  Google Scholar 

  2. Chang ET, Adami HO. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 2006;15:1765–77.

    Article  PubMed  CAS  Google Scholar 

  3. Jeyakumar A, Brickman TM, Doerr T: Review of nasopharyngeal carcinoma. Ear Nose Throat J 2006;85:168–170, 172–163, 184.

    Google Scholar 

  4. Hui EP, Ma BB, Leung SF, King AD, Mo F, Kam MK, et al. Randomized phase II trial of concurrent cisplatin-radiotherapy with or without neoadjuvant docetaxel and cisplatin in advanced nasopharyngeal carcinoma. J Clin Oncol. 2009;27:242–9.

    Article  PubMed  CAS  Google Scholar 

  5. Boekelheide K, Arcila ME, Eveleth J. Cis-diamminedichloroplatinum (II) (cisplatin) alters microtubule assembly dynamics. Toxicol Appl Pharmacol. 1992;116:146–51.

    Article  PubMed  CAS  Google Scholar 

  6. Peyrot V, Briand C, Momburg R, Sari JC. In vitro mechanism study of microtubule assembly inhibition by cis-dichlorodiammine-platinum(II). Biochemical pharmacology. 1986;35:371–5.

    Article  PubMed  CAS  Google Scholar 

  7. Tulub AA, Stefanov VE. Cisplatin stops tubulin assembly into microtubules. A new insight into the mechanism of antitumor activity of platinum complexes. International journal of biological macromolecules. 2001;28:191–8.

    Article  PubMed  CAS  Google Scholar 

  8. Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer. 2010;10:194–204.

    Article  PubMed  CAS  Google Scholar 

  9. Lee SW, Chen TJ, Lin LC, Li CF, Chen LT, Hsing CH, et al. Overexpression of thymidylate synthetase confers an independent prognostic indicator in nasopharyngeal carcinoma. Exp Mol Pathol. 2013;95:83–90.

    Article  PubMed  CAS  Google Scholar 

  10. Cassimeris L. The oncoprotein 18/stathmin family of microtubule destabilizers. Current opinion in cell biology. 2002;14:18–24.

    Article  PubMed  CAS  Google Scholar 

  11. Ringhoff DN, Cassimeris L. Stathmin regulates centrosomal nucleation of microtubules and tubulin dimer/polymer partitioning. Mol Biol Cell. 2009;20:3451–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Sobel A. Stathmin: a relay phosphoprotein for multiple signal transduction? Trends Biochem Sci. 1991;16:301–5.

    Article  PubMed  CAS  Google Scholar 

  13. Alli E, Bash-Babula J, Yang JM, Hait WN. Effect of stathmin on the sensitivity to antimicrotubule drugs in human breast cancer. Cancer Res. 2002;62:6864–9.

    PubMed  CAS  Google Scholar 

  14. Wolden SL, Zelefsky MJ, Kraus DH, Rosenzweig KE, Chong LM, Shaha AR, et al. Accelerated concomitant boost radiotherapy and chemotherapy for advanced nasopharyngeal carcinoma. J Clin Oncol. 2001;19:1105–10.

    PubMed  CAS  Google Scholar 

  15. Chen YL, Uen YH, Li CF, Horng KC, Chen LR, Wu WR, et al. The E2F transcription factor 1 transactives stathmin 1 in hepatocellular carcinoma. Ann Surg Oncol. 2013;20(12):4041–54.

    Article  PubMed  Google Scholar 

  16. Cheng AL, Huang WG, Chen ZC, Peng F, Zhang PF, Li MY, et al. Identification of novel nasopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis. Clin Cancer Res. 2008;14:435–45.

    Article  PubMed  CAS  Google Scholar 

  17. Iancu-Rubin C, Nasrallah CA, Atweh GF: Stathmin prevents the transition from a normal to an endomitotic cell cycle during megakaryocytic differentiation. Cell cycle (Georgetown, Tex) 2005;4:1774–1782.

    Google Scholar 

  18. Kouzu Y, Uzawa K, Koike H, Saito K, Nakashima D, Higo M, et al. Overexpression of stathmin in oral squamous-cell carcinoma: correlation with tumour progression and poor prognosis. Br J Cancer. 2006;94:717–23.

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Melhem RF, Zhu XX, Hailat N, Strahler JR, Hanash SM. Characterization of the gene for a proliferation-related phosphoprotein (oncoprotein 18) expressed in high amounts in acute leukemia. J Biol Chem. 1991;266:17747–53.

    PubMed  CAS  Google Scholar 

  20. Ghosh PK, Anderson J, Cohen N, Takeshita K, Atweh GF, Lebowitz P. Expression of the leukemia-associated gene, p18, in normal and malignant tissues; inactivation of expression in a patient with cleaved b cell lymphoma/leukemia. Oncogene. 1993;8:2869–72.

    PubMed  CAS  Google Scholar 

  21. Brattsand G. Correlation of oncoprotein 18/stathmin expression in human breast cancer with established prognostic factors. Br J Cancer. 2000;83:311–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Chen G, Wang H, Gharib TG, Huang CC, Thomas DG, Shedden KA, et al. Overexpression of oncoprotein 18 correlates with poor differentiation in lung adenocarcinomas. Mol Cell Proteomics. 2003;2:107–16.

    Article  PubMed  CAS  Google Scholar 

  23. Jeon TY, Han ME, Lee YW, Lee YS, Kim GH, Song GA, et al. Overexpression of stathmin1 in the diffuse type of gastric cancer and its roles in proliferation and migration of gastric cancer cells. Br J Cancer. 2010;102:710–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Hsieh SY, Huang SF, Yu MC, Yeh TS, Chen TC, Lin YJ, et al. Stathmin1 overexpression associated with polyploidy, tumor-cell invasion, early recurrence, and poor prognosis in human hepatoma. Mol Carcinog. 2010;49:476–87.

    PubMed  CAS  Google Scholar 

  25. Yuan RH, Jeng YM, Chen HL, Lai PL, Pan HW, Hsieh FJ, et al. Stathmin overexpression cooperates with p53 mutation and osteopontin overexpression, and is associated with tumour progression, early recurrence, and poor prognosis in hepatocellular carcinoma. J Pathol. 2006;209:549–58.

    Article  PubMed  CAS  Google Scholar 

  26. Su D, Smith SM, Preti M, Schwartz P, Rutherford TJ, Menato G, et al. Stathmin and tubulin expression and survival of ovarian cancer patients receiving platinum treatment with and without paclitaxel. Cancer. 2009;115:2453–63.

    Article  PubMed  CAS  Google Scholar 

  27. Salvesen HB, Carter SL, Mannelqvist M, Dutt A, Getz G, Stefansson IM, et al. Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of pi3 kinase activation. Proc Natl Acad Sci U S A. 2009;106:4834–9.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Xi W, Rui W, Fang L, Ke D, Ping G, Hui-Zhong Z. Expression of stathmin/op18 as a significant prognostic factor for cervical carcinoma patients. J Cancer Res Clin Oncol. 2009;135:837–46.

    Article  PubMed  CAS  Google Scholar 

  29. Mistry SJ, Atweh GF. Therapeutic interactions between stathmin inhibition and chemotherapeutic agents in prostate cancer. Mol Cancer Ther. 2006;5:3248–57.

    Article  PubMed  CAS  Google Scholar 

  30. Zheng P, Liu YX, Chen L, Liu XH, Xiao ZQ, Zhao L, et al. Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer. J Proteome Res. 2010;9:4897–905.

    Article  PubMed  CAS  Google Scholar 

  31. Karst AM, Levanon K, Duraisamy S, Liu JF, Hirsch MS, Hecht JL, et al. Stathmin 1, a marker of pi3k pathway activation and regulator of microtubule dynamics, is expressed in early pelvic serous carcinomas. Gynecol Oncol. 2011;2011:17.

    Google Scholar 

  32. Prota AE, Bargsten K, Zurwerra D, Field JJ, Diaz JF, Altmann KH, et al. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science. 2013;339:587–90.

    Article  PubMed  CAS  Google Scholar 

  33. Lee AW, Tung SY, Chan AT, Chappell R, Fu YT, Lu TX, et al. A randomized trial on addition of concurrent-adjuvant chemotherapy and/or accelerated fractionation for locally-advanced nasopharyngeal carcinoma. Radiother Oncol. 2011;98:15–22.

    Article  PubMed  Google Scholar 

  34. Jeha S, Luo XN, Beran M, Kantarjian H, Atweh GF. Antisense rna inhibition of phosphoprotein p18 expression abrogates the transformed phenotype of leukemic cells. Cancer Res. 1996;56:1445–50.

    PubMed  CAS  Google Scholar 

  35. Misek DE, Chang CL, Kuick R, Hinderer R, Giordano TJ, Beer DG, et al. Transforming properties of a q18 e mutation of the microtubule regulator op18. Cancer Cell. 2002;2:217–28.

    Article  PubMed  CAS  Google Scholar 

  36. Belletti B, Nicoloso MS, Schiappacassi M, Berton S, Lovat F, Wolf K, et al. Stathmin activity influences sarcoma cell shape, motility, and metastatic potential. Mol Biol Cell. 2008;19:2003–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Gan L, Guo K, Li Y, Kang X, Sun L, Shu H, et al. Up-regulated expression of stathmin may be associated with hepatocarcinogenesis. Oncol Rep. 2010;23:1037–43.

    PubMed  CAS  Google Scholar 

  38. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev. 1998;12:2245–62.

    Article  PubMed  CAS  Google Scholar 

  39. Dimova DK, Dyson NJ. The E2F transcriptional network: old acquaintances with new faces. Oncogene. 2005;24:2810–26.

    Article  PubMed  CAS  Google Scholar 

  40. Helin K. Regulation of cell proliferation by the E2F transcription factors. Current Opinion in Genetics & Development. 1998;8:28–35.

    Article  CAS  Google Scholar 

  41. Takahashi Y, Rayman JB, Dynlacht BD. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev. 2000;14:804–16.

    PubMed Central  PubMed  CAS  Google Scholar 

  42. Li J, Ran C, Li E, Gordon F, Comstock G, Siddiqui H, et al. Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev Cell. 2008;14:62–75.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Helin K, Wu CL, Fattaey AR, Lees JA, Dynlacht BD, Ngwu C, et al. Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation. Genes Dev. 1993;7:1850–61.

    Article  PubMed  CAS  Google Scholar 

  44. DeGregori J, Kowalik T, Nevins JR. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and g1/s-regulatory genes. Mol Cell Biol. 1995;15:4215–24.

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Wells J, Graveel CR, Bartley SM, Madore SJ, Farnham PJ. The identification of E2F1-specific target genes. Proc Natl Acad Sci U S A. 2002;99:3890–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Bracken AP, Ciro M, Cocito A, Helin K. E2f target genes: Unraveling the biology. Trends Biochem Sci. 2004;29:409–17.

    Article  PubMed  CAS  Google Scholar 

  47. Le QT, Tate D, Koong A, Gibbs IC, Chang SD, Adler JR, et al. Improved local control with stereotactic radiosurgical boost in patients with nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2003;56:1046–54.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Chi-Mei Medical Center and 102-2314-B-110-001 (National Science Council, Taiwan) to YL Shiue.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yow-Ling Shiue.

Additional information

Han-Ping Hsu and Chien-Feng Li contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, HP., Li, CF., Lee, SW. et al. Overexpression of stathmin 1 confers an independent prognostic indicator in nasopharyngeal carcinoma. Tumor Biol. 35, 2619–2629 (2014). https://doi.org/10.1007/s13277-013-1345-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1345-3

Keywords

Navigation