Skip to main content
Log in

Efficacy of Cisplatin-loaded polybutyl cyanoacrylate nanoparticles on the glioblastoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Glioblastoma is known as one of the most aggressive human cancers. To gain access of the brain, therapeutic agents must overcome blood–brain barrier (BBB). In this study, Cisplatin (Cispt)-loaded polybutylcyanoacrylate (PBCA) nanoparticles (NPs) were prepared through miniemulsion polymerization technique. They were coated with polysorbate 80 to cross the BBB of glioblastoma-bearing rats. Prepared NPs were characterized with respect to their size, size distribution, zeta potential, drug loading and encapsulation efficiency, cytotoxicity effects, drug release, and stability pattern. Size and zeta potential of nanodrug were found to be 489 nm and −20 mV, while drug loading and encapsulation efficiency were determined to be 5 % and 25 %, respectively. Release studies demonstrated high retention capability of nanodrug in that 3.18 % of Cispt was released from NPs in a period of 51 h. NPs presented acceptable stability after 2 months and lyophilization. Mean survival time in nanodrug receivers was 19.6 days, while it was 17.5 days for free drug receivers. Histological studies demonstrated efficacy of PBCA NPs in reducing side effects. Finally, such preparation can be considered as a promising nanocarrier for other types of tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Beduneau A, Saulnier P, Benoit J. Active targeting of brain tumors using nanocarriers. Biomaterials. 2007;28:4947–67.

    Article  CAS  PubMed  Google Scholar 

  2. Tian XH, Lin XN, Wei F, Feng W, Huang ZC, Wang P, et al. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int J Nanomedicine. 2011;6:445–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chakraborty C, Sarkar B, Hsu C, Wen Z, Lin C, Shieh P. Future prospects of nanoparticles on brain targeted drug delivery. J Neurooncol. 2009;93:285–6.

    Article  CAS  PubMed  Google Scholar 

  4. Pardridge W. Blood–brain barrier delivery. Drug Discov Today. 2007;12:54–61.

    Article  CAS  PubMed  Google Scholar 

  5. Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul Pharmacol. 2002;38:323–37.

    Article  CAS  PubMed  Google Scholar 

  6. Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem. 2013;2013:18.

    Article  Google Scholar 

  7. Garcia-Garcia E, Andrieux K, Gilb S, Couvreur P. Colloidal carriers and blood–brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm. 2005;298:274–92.

    Article  CAS  PubMed  Google Scholar 

  8. Koffie R, Farrar C, Saidi L, William C, Hyman B, Spires-Jones T. Nanoparticles enhance brain delivery of blood–brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proc Natl Acad Sci U S A. 2011;108:18837–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hasadsri L, Kreuter J, Hattori H, Iwasaki T, George JM. Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem. 2009;284:6972–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dikpati A, Madgulkar AR, Kshirsagar SJ, Bhalekar MR, Singh Chahal A. Targeted drug delivery to CNS using nanoparticles. JAPS. 2012;2:179–91.

    Google Scholar 

  11. De Jonghe B, Horn C. Chemotherapy agent cisplatin induces 48-h Fos expression in the brain of a vomiting species, the house musk shrew (Suncus murinus). Am J Physiol Regul Integr Comp Physiol. 2009;296:902–11.

    Article  Google Scholar 

  12. Wilson JJ, Lopes JF, Lippard SJ. Synthesis, characterization, and photophysical properties of three platinum(II) complexes bearing fluorescent analogues of the Di-2-pyridylmethane ligand. Inorg Chem. 2010;49:5303–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Savrikar S, Lagad C. Study of preparation and standardization of ‘Maadhutailika Basti’ with special reference to emulsion stability. Ayu. 2010;31:1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fontes G, Amaral P, Nele M, Coelho M. Factorial design to optimize biosurfactant production by Yarrowia lipolytica. J Biomed Biotechnol. 2010;2010:1–8.

    Article  Google Scholar 

  15. Miura F, Alves M, Rocha M, Silva R, Oba-Shinjo S, Uno M, et al. Experimental model of C6 brain tumors in athymic rats Arq. Neuro-Psiquiatria. 2008;66:238–41.

    Article  Google Scholar 

  16. Steiniger SC, Kreuter J, Khalansky AS, Skidan IN, Bobruskin AI, Smirnova ZS, et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer. 2004;109:759–67.

    Article  CAS  PubMed  Google Scholar 

  17. Sreelakshmi C, Datta KK, Yadav JS, Reddy BV. Honey derivatized Au and Ag nanoparticles and evaluation of its antimicrobial activity. J Nanosci Nanotechnol. 2011;11:6995–7000.

    Article  CAS  PubMed  Google Scholar 

  18. Wu L, Cai X, Nelson K, Xing W, Xia J, Zhang R, et al. A green synthesis of carbon nanoparticle from honey for real-time photoacoustic imaging. Nano Res. 2013;6:312–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Palanisamy KL, Meenakshi Sundaram N, Devabharathi V, Thangarasu P. Synthesis and characterization of olive oil mediated iron oxide nanoparticles. Dig J Nanomater Bios. 2013;2:607–12.

    Google Scholar 

  20. Yan X, Gemeinhart RA. Cisplatin delivery from poly (acrylic acid-co-methyl methacrylate) microparticles. J Control Release. 2005;106:198–208.

    Article  CAS  PubMed  Google Scholar 

  21. Ebrahimi Shahmabadi H, Akbarzadeh A, Mokhtari MJ, Mortazavi M, Ghasemi S, Mohammadi H, et al. In vitro evaluation of the effects of acetone, on the potency of cisplatin: is it a good candidate for cisplatin carrier preparation? E3 J Biotechnol Pharm Res. 2012;3:137–40.

    Google Scholar 

  22. Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev. 2012;64:246–55.

    Article  Google Scholar 

  23. Duan J, Zhang Y, Han S, Chen Y, Li B, Liao M, et al. Synthesis and in vitro/in vivo anti-cancer evaluation of curcumin-loaded chitosan/poly (butyl cyanoacrylate) nanoparticles. Int J Pharm. 2010;400:211–20.

    Article  CAS  PubMed  Google Scholar 

  24. Macka M, Borák J, Seménková L, Kiss F. Decomposition of cisplatin in aqueous solutions containing chlorides by ultrasonic energy and light. J Pharm Sci. 1994;83:815–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kante B, Couvreur P, Dubois-Krack G, De Meester C, Guiot P, Roland M, et al. Toxicity of polyalkylcyanoacrylate nanoparticles I: free nanoparticles. J Pharm Sci. 1982;71:786–90.

    Article  CAS  PubMed  Google Scholar 

  26. De Angelis LM. Brain tumours. N Engl J Med. 2001;344:114–23.

    Article  Google Scholar 

  27. Nelson DF, Nelson JS, Davis DR, Chang CH, Griffin TW, Pajak TF. Survival and prognosis of patients with astrocytoma with atypical or anaplastic features. J Neurooncol. 1985;3:99–103.

    Article  CAS  PubMed  Google Scholar 

  28. Kornblith PL, Walker M. Chemotherapy for malignant gliomas. J Neurosurg. 1998;68:1–17.

    Article  Google Scholar 

  29. Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, et al. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep. 2013;3:2534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parsa AT, Chakrabarti I, Hurley PT, Chi JH, Hall JS, Kaiser MG, et al. Limitations of the C6/Wistar rat intracerebral glioma model: implications for evaluating immunotherapy. Neurosurgery. 2000;47:993–9.

    Article  CAS  PubMed  Google Scholar 

  31. Barth R, Kaur B. Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol. 2009;94:299–312.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Petri B, Bootz A, Khalansky A, Hekmatara T, Muller R, Uhl R. Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated Poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Control Release. 2007;117:51–8.

    Article  CAS  PubMed  Google Scholar 

  33. Olivier JC, Fenart L, Chauvet R, Pariat C, Cecchelli R, Couet W. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res. 1999;16:1836–42.

    Article  CAS  PubMed  Google Scholar 

  34. de Verdière AC, Dubernet C, Némati F, Soma E, Appel M, Ferté J, et al. Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles: towards a mechanism of action. Br J Cancer. 1997;76:198–205.

    Article  PubMed  Google Scholar 

  35. Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, et al. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol. 2010;28:1145–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Ebrahim Alavi or Azim Akbarzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebrahimi Shahmabadi, H., Movahedi, F., Koohi Moftakhari Esfahani, M. et al. Efficacy of Cisplatin-loaded polybutyl cyanoacrylate nanoparticles on the glioblastoma. Tumor Biol. 35, 4799–4806 (2014). https://doi.org/10.1007/s13277-014-1630-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1630-9

Keywords

Navigation