Skip to main content

Advertisement

Log in

MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway

  • Research Article
  • Published:
Tumor Biology

Abstract

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), one of the first found cancer-associated long noncoding RNAs (lncRNAs), involves in the development and progression of many types of tumors. An aberrant expression of MALAT1 was observed in hepatocellular carcinoma, cervical cancer, breast cancer, ovarian cancer, and colorectal cancer. However, the exact effects and molecular mechanisms of MALAT1 in osteosarcoma progression are still unknown up to now. Here, we investigated the role of MALAT1 in human osteosarcoma cell lines and clinical tumor samples in order to determine the function of this molecule. In our research, the MALAT1 messenger RNA (mRNA) was highly expressed in human osteosarcoma tissues, and its expression level was closely correlated with pulmonary metastasis. Then, we employed lentivirus-mediated knockdown of MALAT1 in U-2 OS and SaO2 to determine the role of MALAT1 in osteosarcoma cell lines. Lentivirus-mediated MALAT1 small interfering RNA (siRNA) could efficiently downregulated the expression level of MALAT1 in osteosarcoma cell lines. Knockdown of MALAT1 inhibited the proliferation and invasion of human osteosarcoma cell and suppressed its metastasis in vitro and vivo. At the same time, the proliferating cell nuclear antigen (PCNA), matrix metallopeptidase 9 (MMP-9), phosphorylated PI3Kp85α, and Akt expressions were significantly inhibited in MALAT1-deleted cells. These findings indicated that MALAT1 might suppress the tumor growth and metastasis via PI3K/AKT signaling pathway. Taken together, our data indicated that MALAT1 might be an oncogenic lncRNA that promoted proliferation and metastasis of osteosarcoma and could be regarded as a therapeutic target in human osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang J, Ni J, Liu K, Yu Y, Xie M, Kang R, et al. HMGB1 promotes drug resistance in osteosarcoma. Cancer Res. 2012;72:230–8.

    Article  CAS  PubMed  Google Scholar 

  2. Clark JC, Dass CR, Choong PF. A review of clinical and molecular prognostic factors in osteosarcoma. J Cancer Res Clin Oncol. 2008;134:281–97.

    Article  CAS  PubMed  Google Scholar 

  3. Meyers PA, Schwartz CL, Krailo MD, Healey JH, Bernstein ML, Betcher D, et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the Children’s Oncology Group. J Clin Oncol. 2008;26:633–8.

    Article  CAS  PubMed  Google Scholar 

  4. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.

    Article  CAS  PubMed  Google Scholar 

  5. Mattick JS. The genetic signatures of noncoding RNAs. PLoS Genet. 2009;5:e1000459.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gutschner T, Hammerle M, Diederichs S. MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl). 2013;91:791–801.

    Article  CAS  Google Scholar 

  7. Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22:8031–41.

    Article  PubMed  Google Scholar 

  8. Yamada K, Kano J, Tsunoda H, Yoshikawa H, Okubo C, Ishiyama T, et al. Phenotypic characterization of endometrial stromal sarcoma of the uterus. Cancer Sci. 2006;97:106–12.

    Article  CAS  PubMed  Google Scholar 

  9. Brauze D, Mikstacka R, Pelkonen O. Monoclonal antibody characterization of NADH- and NADPH-dependent hydroxylation of benzo(a)pyrene in liver microsomes from 5,6-benzoflavone-induced C57Bl/6 mice. Acta Biochim Pol. 1990;37:219–25.

    CAS  PubMed  Google Scholar 

  10. Lin R, Maeda S, Liu C, Karin M, Edgington TS. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene. 2007;26:851–8.

    Article  CAS  PubMed  Google Scholar 

  11. Feng J, Tian L, Sun Y, Li D, Wu T, Wang Y, et al. Expression of long non-coding ribonucleic acid metastasis-associated lung adenocarcinoma transcript-1 is correlated with progress and apoptosis of laryngeal squamous cell carcinoma. Head Neck Oncol. 2012;4:46.

    Google Scholar 

  12. Sun Y, Wu J, Wu SH, Thakur A, Bollig A, Huang Y, et al. Expression profile of microRNAs in c-Myc induced mouse mammary tumors. Breast Cancer Res Treat. 2009;118:185–96.

    Article  CAS  PubMed  Google Scholar 

  13. Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics. 2007;8:39.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ji Q, Zhang L, Liu X, Zhou L, Wang W, Han Z, et al. Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br J Cancer. 2014;111:736–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lai MC, Yang Z, Zhou L, Zhu QQ, Xie HY, Zhang F, et al. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol. 2012;29:1810–6.

    Article  CAS  PubMed  Google Scholar 

  17. Ying L, Chen Q, Wang Y, Zhou Z, Huang Y, Qiu F. Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol Biosyst. 2012;8:2289–94.

    Article  CAS  PubMed  Google Scholar 

  18. Taniguchi M, Fujiwara K, Nakai Y, Ozaki T, Koshikawa N, Toshio K, et al. Inhibition of malignant phenotypes of human osteosarcoma cells by a gene silencer, a pyrrole-imidazole polyamide, which targets an E-box motif. FEBS Open Bio. 2014;4:328–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9:703–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fellenberg J, Bernd L, Delling G, Witte D, Zahlten-Hinguranage A. Prognostic significance of drug-regulated genes in high-grade osteosarcoma. Mod Pathol. 2007;20:1085–94.

    Article  CAS  PubMed  Google Scholar 

  21. Edmondson HA, Steiner PE. Primary carcinoma of the liver: a study of 100 cases among 48,900 necropsies. Cancer. 1954;7:462–503.

    Article  CAS  PubMed  Google Scholar 

  22. Hong SK, Yoon S, Moelling C, Arthan D, Park JI. Noncatalytic function of ERK1/2 can promote Raf/MEK/ERK-mediated growth arrest signaling. J Biol Chem. 2009;284:33006–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Sun S, Chen J, Ren P, Hu Y, Cao Z, et al. Oxymatrine induces mitochondria dependent apoptosis in human osteosarcoma MNNG/HOS cells through inhibition of PI3K/Akt pathway. Tumour Biol. 2014;35:1619–25.

    Article  CAS  PubMed  Google Scholar 

  24. Yuan SX, Yang F, Yang Y, Tao QF, Zhang J, Huang G, et al. Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients’ poor recurrence-free survival after hepatectomy. Hepatology. 2012;56:2231–41.

    Article  CAS  PubMed  Google Scholar 

  25. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, et al. Identification and analysis of functional elements in 1 % of the human genome by the encode pilot project. Nature. 2007;447:799–816.

    Article  CAS  PubMed  Google Scholar 

  26. Wu XS, Wang XA, Wu WG, Hu YP, Li ML, Ding Q, et al. MALAT1 promotes the proliferation and metastasis of gallbladder cancer cells by activating the ERK/MAPK pathway. Cancer Biol Ther. 2014;15:806–14.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jin S, Pang RP, Shen JN, Huang G, Wang J, Zhou JG. Grifolin induces apoptosis via inhibition of PI3K/AKT signalling pathway in human osteosarcoma cells. Apoptosis. 2007;12:1317–26.

    Article  CAS  PubMed  Google Scholar 

  28. Liu B, Shi ZL, Feng J, Tao HM. Celecoxib, a cyclooxygenase-2 inhibitor, induces apoptosis in human osteosarcoma cell line MG-63 via down-regulation of PI3K/Akt. Cell Biol Int. 2008;32:494–501.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Gao or Xuhui Zhou.

Additional information

Yongqiang Dong and Guojun Liang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Liang, G., Yuan, B. et al. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumor Biol. 36, 1477–1486 (2015). https://doi.org/10.1007/s13277-014-2631-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2631-4

Keywords

Navigation