Skip to main content
Log in

Pseudogene-expressed RNAs: a new frontier in cancers

  • Review
  • Published:
Tumor Biology

Abstract

Over the past decade, the importance of non-protein-coding functional elements in the human genome has emerged from the water and been identified as a key revelation in post-genomic biology. Since the completion of the ENCODE (Encyclopedia of DNA Elements) and FANTOM (Functional Annotation of Mammals) project, tens of thousands of pseudogenes as well as numerous long non-coding RNA (lncRNA) genes were identified. However, while pseudogenes were initially regarded as non-functional relics littering the human genome during evolution, recent studies have revealed that they play critical roles at multiple levels in diverse physiological and pathological processes, especially in cancer through parental-gene-dependent or parental-gene-independent regulation. Herein, we review the current knowledge of pseudogenes and synthesize the nascent evidence for functional properties and regulatory modalities exerted by pseudogene-transcribed RNAs in human cancers and prospect the potential as molecular signatures in cancer reclassification and tailored therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89. doi:10.1101/gr.132159.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pei B, Sisu C, Frankish A, Howald C, Habegger L, Mu XJ, et al. The GENCODE pseudogene resource. Genome Biol. 2012;13(9):R51. doi:10.1186/gb-2012-13-9-r51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309(5740):1559–63. doi:10.1126/science.1112014.

    Article  CAS  PubMed  Google Scholar 

  4. Jacq C, Miller JR, Brownlee GG. A pseudogene structure in 5S DNA of Xenopus laevis. Cell. 1977;12(1):109–20.

    Article  CAS  PubMed  Google Scholar 

  5. Li W, Yang W, Wang XJ. Pseudogenes: pseudo or real functional elements? J Genet Genomics. 2013;40(4):171–7. doi:10.1016/j.jgg.2013.03.003.

    Article  PubMed  Google Scholar 

  6. Kazazian Jr HH. Processed pseudogene insertions in somatic cells. Mob DNA. 2014;5:20. doi:10.1186/1759-8753-5-20.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grander D, Johnsson P. Pseudogene-expressed RNAs: emerging roles in gene regulation and disease. Curr Top Microbiol Immunol. 2015. doi:10.1007/82_2015_442.

    Google Scholar 

  8. Goodhead I, Darby AC. Taking the pseudo out of pseudogenes. Curr Opin Microbiol. 2015;23:102–9. doi:10.1016/j.mib.2014.11.012.

    Article  CAS  PubMed  Google Scholar 

  9. Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J, et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell. 1992;71(3):527–42.

    Article  CAS  PubMed  Google Scholar 

  10. Hall LL, Byron M, Sakai K, Carrel L, Willard HF, Lawrence JB. An ectopic human XIST gene can induce chromosome inactivation in post differentiation human HT-1080 cells. Proc Natl Acad Sci U S A. 2002;99(13):8677–82. doi:10.1073/pnas.132468999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kota SK, Roy Chowdhury D, Rao LK, Padmalatha V, Singh L, Bhadra U. Uncoupling of X-linked gene silencing from XIST binding by DICER1 and chromatin modulation on human inactive X chromosome. Chromosoma. 2015;124(2):249–62. doi:10.1007/s00412-014-0495-4.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Z, Harrison PM, Liu Y, Gerstein M. Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res. 2003;13(12):2541–58. doi:10.1101/gr.1429003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Proudfoot N. Pseudogenes. Nature. 1980;286(5776):840–1.

    Article  CAS  PubMed  Google Scholar 

  14. Groen JN, Capraro D, Morris KV. The emerging role of pseudogene expressed non-coding RNAs in cellular functions. Int J Biochem Cell Biol. 2014;54:350–5. doi:10.1016/j.biocel.2014.05.008.

    Article  CAS  PubMed  Google Scholar 

  15. Xiao-Jie L, Ai-Mei G, Li-Juan J, Jiang X. Pseudogene in cancer: real functions and promising signature. J Med Genet. 2015;52(1):17–24. doi:10.1136/jmedgenet-2014-102785.

    Article  PubMed  Google Scholar 

  16. Chan WL, Chang JG. Pseudogene-derived endogenous siRNAs and their function. Methods Mol Biol. 2014;1167:227–39. doi:10.1007/978-1-4939-0835-6_15.

    Article  CAS  PubMed  Google Scholar 

  17. Kalyana-Sundaram S, Kumar-Sinha C, Shankar S, Robinson DR, Wu YM, Cao X, et al. Expressed pseudogenes in the transcriptional landscape of human cancers. Cell. 2012;149(7):1622–34. doi:10.1016/j.cell.2012.04.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han L, Yuan Y, Zheng S, Yang Y, Li J, Edgerton ME, et al. The Pan-Cancer analysis of pseudogene expression reveals biologically and clinically relevant tumour subtypes. Nat Commun. 2014;5:3963. doi:10.1038/ncomms4963.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Welch JD, Baran-Gale J, Perou CM, Sethupathy P, Prins JF. Pseudogenes transcribed in breast invasive carcinoma show subtype-specific expression and ceRNA potential. BMC Genomics. 2015;16:113. doi:10.1186/s12864-015-1227-8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465(7301):1033–8. doi:10.1038/nature09144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell. 2011;147(2):344–57. doi:10.1016/j.cell.2011.09.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen CL, Tseng YW, Wu JC, Chen GY, Lin KC, Hwang SM, et al. Suppression of hepatocellular carcinoma by baculovirus-mediated expression of long non-coding RNA PTENP1 and microRNA regulation. Biomaterials. 2015;44:71–81. doi:10.1016/j.biomaterials.2014.12.023.

    Article  CAS  PubMed  Google Scholar 

  23. Yu G, Yao W, Gumireddy K, Li A, Wang J, Xiao W, et al. Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression. Mol Cancer Ther. 2014;13(12):3086–97. doi:10.1158/1535-7163.MCT-14-0245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karreth FA, Reschke M, Ruocco A, Ng C, Chapuy B, Leopold V, et al. The BRAF pseudogene functions as a competitive endogenous RNA and induces lymphoma in vivo. Cell. 2015;161(2):319–32. doi:10.1016/j.cell.2015.02.043.

    Article  CAS  PubMed  Google Scholar 

  25. Rutnam ZJ, Du WW, Yang W, Yang X, Yang BB. The pseudogene TUSC2P promotes TUSC2 function by binding multiple microRNAs. Nat Commun. 2014;5:2914. doi:10.1038/ncomms3914.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zheng L, Li X, Gu Y, Lv X, Xi T. The 3′UTR of the pseudogene CYP4Z2P promotes tumor angiogenesis in breast cancer by acting as a ceRNA for CYP4Z1. Breast Cancer Res Treat. 2015;150(1):105–18. doi:10.1007/s10549-015-3298-2.

    Article  CAS  PubMed  Google Scholar 

  27. Zheng L, Li X, Gu Y, Ma Y, Xi T. Pseudogene CYP4Z2P 3′UTR promotes angiogenesis in breast cancer. Biochem Biophys Res Commun. 2014;453(3):545–51. doi:10.1016/j.bbrc.2014.09.112.

    Article  CAS  PubMed  Google Scholar 

  28. Esposito F, De Martino M, Petti MG, Forzati F, Tornincasa M, Federico A, et al. HMGA1 pseudogenes as candidate proto-oncogenic competitive endogenous RNAs. Oncotarget. 2014;5(18):8341–54.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Esposito F, De Martino M, Forzati F, Fusco A. HMGA1-pseudogene overexpression contributes to cancer progression. Cell Cycle. 2014;13(23):3636–9. doi:10.4161/15384101.2014.974440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Han YJ, Ma SF, Yourek G, Park YD, Garcia JG. A transcribed pseudogene of MYLK promotes cell proliferation. FASEB J. 2011;25(7):2305–12. doi:10.1096/fj.10-177808.

    Article  CAS  PubMed  Google Scholar 

  31. Peng H, Ishida M, Li L, Saito A, Kamiya A, Hamilton JP, et al. Pseudogene INTS6P1 regulates its cognate gene INTS6 through competitive binding of miR-17-5p in hepatocellular carcinoma. Oncotarget. 2015;6(8):5666–77.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang TH, Lin YS, Chen Y, Yeh CT, Huang YL, Hsieh TH, et al. Long non-coding RNA AOC4P suppresses hepatocellular carcinoma metastasis by enhancing vimentin degradation and inhibiting epithelial-mesenchymal transition. Oncotarget. 2015;6(27):23342–57.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mei D, Song H, Wang K, Lou Y, Sun W, Liu Z, et al. Up-regulation of SUMO1 pseudogene 3 (SUMO1P3) in gastric cancer and its clinical association. Med Oncol. 2013;30(4):709. doi:10.1007/s12032-013-0709-2.

    Article  PubMed  Google Scholar 

  34. Hayashi H, Arao T, Togashi Y, Kato H, Fujita Y, De Velasco MA, et al. The OCT4 pseudogene POU5F1B is amplified and promotes an aggressive phenotype in gastric cancer. Oncogene. 2015;34(2):199–208. doi:10.1038/onc.2013.547.

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Guo ZY, Zhang R, Xin B, Chen R, Zhao J, et al. Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis. 2013;34(8):1773–81. doi:10.1093/carcin/bgt139.

    Article  CAS  PubMed  Google Scholar 

  36. Hawkins PG, Morris KV. Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription. 2010;1(3):165–75. doi:10.4161/trns.1.3.13332.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lv W, Wang L, Lu J, Mu J, Liu Y, Dong P. Downregulation of TPTE2P1 inhibits migration and invasion of gallbladder cancer cells. Chem Biol Drug Des. 2015;86(4):656–62. doi:10.1111/cbdd.12533.

    Article  CAS  PubMed  Google Scholar 

  38. Chan WL, Yuo CY, Yang WK, Hung SY, Chang YS, Chiu CC, et al. Transcribed pseudogene psiPPM1K generates endogenous siRNA to suppress oncogenic cell growth in hepatocellular carcinoma. Nucleic Acids Res. 2013;41(6):3734–47. doi:10.1093/nar/gkt047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ye X, Fan F, Bhattacharya R, Bellister S, Boulbes DR, Wang R, et al. VEGFR-1 pseudogene expression and regulatory function in human colorectal cancer cells. Mol Cancer Res. 2015;13(9):1274–82. doi:10.1158/1541-7786.MCR-15-0061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cazalla D, Yario T, Steitz JA. Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science. 2010;328(5985):1563–6. doi:10.1126/science.1187197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jeyapalan Z, Deng Z, Shatseva T, Fang L, He C, Yang BB. Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids Res. 2011;39(8):3026–41. doi:10.1093/nar/gkq1003.

    Article  CAS  PubMed  Google Scholar 

  42. Fujii GH, Morimoto AM, Berson AE, Bolen JB. Transcriptional analysis of the PTEN/MMAC1 pseudogene, psiPTEN. Oncogene. 1999;18(9):1765–9. doi:10.1038/sj.onc.1202492.

    Article  CAS  PubMed  Google Scholar 

  43. Poliseno L, Haimovic A, Christos PJ, Vega YSMEC, Shapiro R, Pavlick A, et al. Deletion of PTENP1 pseudogene in human melanoma. J Investig Dermatol. 2011;131(12):2497–500. doi:10.1038/jid.2011.232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grander D, et al. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol. 2013;20(4):440–6. doi:10.1038/nsmb.2516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pain D, Chirn GW, Strassel C, Kemp DM. Multiple retropseudogenes from pluripotent cell-specific gene expression indicates a potential signature for novel gene identification. J Biol Chem. 2005;280(8):6265–8. doi:10.1074/jbc.C400587200.

    Article  CAS  PubMed  Google Scholar 

  46. Pesce M, Scholer HR. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells. 2001;19(4):271–8. doi:10.1634/stemcells.19-4-271.

    Article  CAS  PubMed  Google Scholar 

  47. Kastler S, Honold L, Luedeke M, Kuefer R, Moller P, Hoegel J, et al. POU5F1P1, a putative cancer susceptibility gene, is overexpressed in prostatic carcinoma. Prostate. 2010;70(6):666–74. doi:10.1002/pros.21100.

    CAS  PubMed  Google Scholar 

  48. Scarola M, Comisso E, Pascolo R, Chiaradia R, Maria Marion R, Schneider C, et al. Epigenetic silencing of Oct4 by a complex containing SUV39H1 and Oct4 pseudogene lncRNA. Nat Commun. 2015;6:7631. doi:10.1038/ncomms8631.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fusco A, Fedele M. Roles of HMGA proteins in cancer. Nat Rev Cancer. 2007;7(12):899–910. doi:10.1038/nrc2271.

    Article  CAS  PubMed  Google Scholar 

  50. Lui KY, Peng HR, Lin JR, Qiu CH, Chen HA, Fu RD, et al. Pseudogene integrator complex subunit 6 pseudogene 1 (INTS6P1) as a novel plasma-based biomarker for hepatocellular carcinoma screening. Tumour Biol. 2015. doi:10.1007/s13277-015-3899-8.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No.81472198), the Key Clinical Medicine Technology Foundation of Jiangsu Province (No.BL2014096), and the Medical Key Talented Person Foundation of the Jiangsu Provincial Developing Health Project (No.RC2011080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoxia Wang or Ming Sun.

Ethics declarations

Conflicts of interest

None

Additional information

Xuefei Shi and Fengqi Nie contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Nie, F., Wang, Z. et al. Pseudogene-expressed RNAs: a new frontier in cancers. Tumor Biol. 37, 1471–1478 (2016). https://doi.org/10.1007/s13277-015-4482-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4482-z

Keywords

Navigation