Skip to main content

Advertisement

Log in

Economic Feasibility Study for Phosphorus Recovery Processes

  • Report
  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

Phosphorus recovery from wastewater has become a necessity for sustainable development because phosphorus is a non-renewable essential resource, and its discharge into the environment causes serious negative impacts. There are no economic incentives for the implementation of phosphorus recovery technologies because the selling price of rock phosphate is lower than phosphorus recovered from sewage. The methodologies used to determine the feasibility of such projects are usually focused on internal costs without considering environmental externalities. This article shows a methodology to assess the economic feasibility of wastewater phosphorus recovery projects that takes into account internal and external impacts. The shadow price of phosphorus is estimated using the directional distance function to measure the environmental benefits obtained by preventing the discharge of phosphorus into the environment. The economic feasibility analysis taking into account the environmental benefits shows that the phosphorus recovery is viable not only from sustainable development but also from an economic point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \( {\text{SSP}}_{t}\,=\,\overline{\text{SSP}}_{t}\,*\,\left({1\,+\,d} \right)^{-t} \) where: SSP t  = present selling price of recovered phosphorus; \( \overline{\text{SSS}}_{t} \) = nominal selling price of recovered phosphorus; d = discount rate and t = year.

References

  • Ahmed, S.Y., R.S. Shiel, and D. Manning. 2006. Use of struvite, a novel P source derived from wastewater treatment, in wheat cultivation. In 18th World congress of soil science, Philadelphia, Pennsylvania, USA, 9–15 July.

  • Berg, U., G. Knoll, E. Kaschka, P.G. Weidler, and R. Nüesch. 2006. Is phosphorus recovery form waste water feasible? Environmental Technology 28: 165–172.

    Article  Google Scholar 

  • Bridger, G.L., M.L. Salutsky, and R.W. Starostka. 1962. Metal ammonium phosphates as fertilizers. Journal of Agricultural and Food Chemistry 10: 181–188.

    Article  CAS  Google Scholar 

  • Chambers, R.G. 1998. Input and output indicators. In Index numbers: essays in honour of Sten Malmquist, ed. R. Färe, S. Grosskopf, and R. Russell. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Cornel, P., and C. Schaum. 2009. Phosphorus recovery from wastewater: needs, technologies and costs. Water Science & Technology 59 (6): 1069–1076.

    Article  CAS  Google Scholar 

  • de-Bashan, L.E., and Y. Bashan. 2004. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Research 38: 4222–4246.

    Article  CAS  Google Scholar 

  • Dockhorn, T. 2007. Stoffstrommanagement und Ressourcenökonomie in der kommunalen, Abwasserwirtsschaft, TU Braunschweig 74, ISSN 0934-9731.

  • Dockhorn, T. 2009. About the economy of phosphorus recovery. In International conference on nutrient recovery from wastewater streams, ed. K. Ashley, D. Mavinic, and F. Koch. London, UK: IWA Publishing.

  • EcoSanRes. 2005. Available from: http://www.ecosanres.org/pdf_files/Fact_sheets/ESR4lowres.pdf.

  • Elliott, H.A. and G.A. O’Connor. 2007. Phosphorus management for sustainable biosolids recycing in the United States. Soil Biology and Biochemistry 39 (6): 1318–1327.

    Google Scholar 

  • Färe, R., S. Grosskopf, C.A. Lovell, and S. Yaisawarng. 1993. Derivation of shadow prices for undesirable outputs: A distance function approach. Review of Economics and Statistics 75 (2): 374–380.

    Google Scholar 

  • Färe, R., S. Grosskopf, and W. Weber. 2001. Shadow prices of Missouri public conservation land. Public Finance Review 29 (6): 444–460.

    Google Scholar 

  • Färe, R., S. Grosskopf, and W. Weber. 2006. Shadow prices and pollution costs in U.S. agriculture. Ecological Economics 56: 89–103.

    Google Scholar 

  • Färe, R., and S. Grosskopf. 1998. Shadow pricing of good and bad commodities. American Journal of Agricultural Economics 80: 584–590.

    Article  Google Scholar 

  • Färe, R., S. Grosskopf, Donh-Woon Noh, and W. Weber. 2005. Characteristics of a polluting technology: Theory and practice. Journal of Econometrics 126: 469–492.

    Article  Google Scholar 

  • Florida Institute of Phosphate Research. 1999. Phosphate deposits bibliography, ed. P. Zhang, G.R. Albarelli, and K.J. Stewart. Available at www.fipr.state.fl.us.

  • Ha, N.V., S. Kant, and V.W. Maclaren. 2008. Shadow prices of environmental outputs and production efficiency of household-level paper recycling units in Vietnam. Ecological Economics 65 (3): 98–110.

    Google Scholar 

  • Hernández, F., M. Molinos, and R. Sala. 2010. Economic valuation of environmental benefits from wastewater treatment processes: An empirical approach for Spain. Science of the Total Environment 408 (4): 953–957.

    Google Scholar 

  • Hernández, F., and R. Sala. 2009. Technical efficiency and cost analysis in wastewater treatment processes: A DEA approach. Desalination 249 (1): 230–234.

    Article  Google Scholar 

  • Hernández, F., A. Urkiaga, L. De las Fuentes, B. Bis, E. Chiru, B. Balazs, and T. Wintgens. 2006. Feasibility studies for water reuse projects: An economical approach. Desalination 187: 253–261.

    Article  Google Scholar 

  • Jasinki, S.M., D.A. Kramer, J.A. Ober, and J.P. Searls. 1999. Fertilizers-sustaining global food supplies. USGS Fact Sheet FS:155–199.

  • Jeanmaire, N., and T. Evans. 2001. Technico-economic feasibility of P-recovery from municipal wastewaters. Environmental Technology 22 (11): 1355–1361.

    Article  CAS  Google Scholar 

  • Köhler, J. 2004. Phosphorus recycling: Regulation and economic analysis. In Phosphorus in environmental technologies: Principles and applications, ed. E. Valsami Jones, 529–546. London, UK: IWA publishing.

    Google Scholar 

  • Lind, B.B., Z. Ban, and S. Bydén. 2000. Nutrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastonite. Bioresource Technology 73: 169–174.

    Article  CAS  Google Scholar 

  • Lunt, O.R., A.M. Kofranek, and S.B. Clark. 1964. Availability of minerals from magnesium ammonium phosphates. Journal of Agricultural and Food Chemistry 12: 497–504.

    Article  CAS  Google Scholar 

  • Maier, W., A. Weidelener, J. Krampe, and U. Rott. 2005. Entwicklung eines Verfarens zur Phosphat-Rückgewinnung aus ausgefaultem Nasschlamm oder entwässertem Faulschlamm als gut Pflanzenverfügbares Magnesium-Ammonium-Phosphat (MAP), Schlussbericht des durch die Deutsche Bundesstiftung Umwelt (Osnabrück) geförderten Forschungsvorhabens AZ 21042.

  • Marti, N., L. Pastor, A. Bouzas, J. Ferrer, and A. Seco. 2010. Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation. Water Research 41 (7): 2371–2379.

    Article  Google Scholar 

  • Molinos, M., F. Hernández, and R. Sala. 2010. Economic feasibility study for wastewater treatment: A cost benefit analysis. Science of the Total Environment 408: 4396–4402.

    Google Scholar 

  • Montag, D., K. Gethke, and J. Pinnekamp. 2009. Different strategies for recovering phosphorus: Technologies and costs. In International conference on nutrient recovery from wastewater streams, ed. K. Ashley, D. Mavinic, and F. Koch. London, UK: IWA Publishing.

    Google Scholar 

  • Münch, E.V., and K. Barr. 2001. Controlled struvite crystallization for removing phosphorus from anaerobic digester sidestreams. Water Research 35: 151–159.

    Article  Google Scholar 

  • Pastor, L. 2008. Estudio de precipitación y recuperación del fósforo presente en las aguas residuales en forma de estruvita (MgNH 4 PO 4 6H 2 O). Valencia: Departamento de Ingeniería Hidraúlica y Medio Ambiente, Universidad Politécnica de Valencia (in Spanish).

    Google Scholar 

  • Paul, E., M.L. Laval, and M. Sperandio. 2001. Excess sludge production and costs due to phosphorus removal. Environmental Technology 22: 1363–1372.

    Article  CAS  Google Scholar 

  • Pinnekamp, J., K. Gethke, and D. Montag. 2005. Stand der Forschung zur Phosphorrückgewinnung, 38. Essener Tagung für Wasser-und Abfallwirtschaft, Aachen, 11.3.2005. Schriftenreihe Gewässerschutz-Wasser-Abwasser, Nr. 198, Aachen.

  • Römer, W. 2006. Vergleichende Untersuchungen zur Pflanzenverfügbarkeit von Phosphat aus verschiedenen P-Recycling-Produkten im Keimpflanzenversuch. Journal of Plant Nutrition and Soil Science 169: 826–832.

    Article  Google Scholar 

  • Schaum, C.A. 2007. Verfahren für eine zukünftige Klärschlammbehandlung- Klärschlammkonditionierung und Rückgewinnung von Phosphor aun Klärschlammasche, Schriftenreihe WAR, TU Darmstadt 185.

  • Shimamura, K., T. Tanaka, Y. Miura, and H. Ishikawa. 2003. Development of high-efficiency phosphorus recovery method using a fluidized-bed crystallized phosphorus removal system. Water Science and Technology 48 (1): 163–170.

    CAS  Google Scholar 

  • Shu, L., P. Schneider, V. Jegatheesan, and J. Johnson. 2006. An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresource Technology 97 (17): 2211–2216.

    Article  CAS  Google Scholar 

  • Steen, I. 1998. Phosphorus availability in the 21st century management of a non-renewable resource. Phosphorus and Potassium 217: 25–31.

    Google Scholar 

  • Taruya, T., Y. Ueno, and M. Fujii. 2000. Development of phosphorus resource recycling process from sewage. In 1st world water congress of IWA, Paris, 03–06 July, Poster NP-046.

  • Ueno, Y., and M. Fujii. 2001. Three years experience of operating and selling recovered struvite from full-scale plant. Environmental Technology 22: 1373–1381.

    Article  CAS  Google Scholar 

  • Van Dijk, J.C., and H. Braakensiek. 1984. Phosphate removal by crystallization in a fluidized bed. Water Science and Technology 17: 133–142.

    Google Scholar 

  • US Geological Survey. 2005. Phosphate rock. Available from: http://minerals.er.usgs.gov/minerals/pubs/commodity/phosphate_rock/phospmcs05.pdf.

  • U.S Geological Survey Home Page. http://minerals.usgs.gov/minerals/.

  • Yen, Z.L., S.H. Chen, S.M. Wang, L.F. Lin, Y.J. Yan, Z.J. Zhang, and J.S. Chen. 2010. Phosphorus recovery from synthetic swine wastewater by chemical precipitation using response surface methodology. Journal of Hazardous Materials 176 (1–3): 1083–1088.

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial assistance received from the Spanish government through the NOVEDAR-Consolider Project (CSD2007-00055) and FPU program (AP2007-03483). Also the authors are grateful to the Journal editor and two anonymous referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Molinos-Senante.

Appendix

Appendix

Given the directional vector g = (1,1) and assuming k = 1, …, K treatment plants operating in a period, the quadratic directional distance function for WWTP k is expressed as

$$ \begin{gathered} D_{0} \left( {x_{k} ,y_{k} ,b_{k} ;1,1} \right) = \alpha + \sum\limits_{n = 1}^{N} {\alpha_{n} x_{nk} } + \sum\limits_{m = 1}^{M} {\beta_{m} y_{mk} } + \sum\limits_{j = 1}^{J} {\gamma_{j} b_{jk} } + \frac{1}{2}\sum\limits_{n = 1}^{N} {} \sum\limits_{{n^{\prime } = 1}}^{N} {\alpha_{{nn^{\prime } }} x_{nk} } \hfill \\ + \frac{1}{2}\sum\limits_{m = 1}^{M} {} \sum\limits_{{m^{\prime } = 1}}^{M} {\beta_{{mm^{\prime } }} y_{m} y_{{m^{\prime } }} } + \frac{1}{2}\sum\limits_{j = 1}^{J} {} \sum\limits_{{j^{\prime } = 1}}^{J} {\gamma_{{jj^{\prime } }} b_{j} b_{{j^{\prime } }} } + \sum\limits_{n = 1}^{N} {} \sum\limits_{m = 1}^{M} {\delta_{n \, m} x_{nk} y_{mk} } \hfill \\ + \sum\limits_{n = 1}^{N} {} \sum\limits_{j = 1}^{J} {\eta_{nj} x_{nk} b_{jk} } + \sum\limits_{m = 1}^{M} {} \sum\limits_{j = 1}^{J} {\mu_{mj} y_{mk} b_{jk} } \hfill \\ \end{gathered} $$
(8)

Equation 8: Quadratic directional distance function.

$$ \begin{aligned} {\text{Min}} = \sum\limits_{k = 1}^{K} {\left[ {D_{0} \left( {x_{k} ,y_{k} ,b_{k} ;1,1} \right) - 0} \right]} \\ & {\text{s}} . {\text{t}} . :\\ & \,({\text{i}}) \, D_{0} \left( {x_{k} ,y_{k} ,b_{k} ;1,1} \right) \ge 0,\;\;\;\;k = 1, \ldots ,K \\ & \,({\text{ii}}) \, {\frac{{\partial D_{0} \left( {x_{k} ,y_{k} ,b_{k} ;1,1} \right)}}{{\partial b_{j} }}} \ge 0,\;\;\;\;j = 1, \ldots ,J,\;k = 1, \ldots ,K \\ & ({\text{iii}}) \, {\frac{{\partial D_{0} \left( {x_{k} ,y_{k} ,b_{k} ;1,1} \right)}}{{\partial y_{m} }}} \le 0,\;\;\;\;m^{\prime } = 1, \ldots ,M,\;k = 1, \ldots ,K \\ \,& ({\text{iv}}){\frac{{\partial D_{0} \left( {x_{k} ,y_{k} ,b_{k} ;1,1} \right)}}{{\partial x_{n} }}} \ge 0,\;\;\;\;n = 1, \ldots ,N, \\ \,& ({\text{v}}) \, \sum\limits_{m = 1}^{M} {\beta_{m} } - \sum\limits_{j = 1}^{J} {\gamma_{j} = - 1} ;\;\sum\limits_{{m^{\prime } = 1}}^{M} {\beta_{{mm^{\prime } }} } - \sum\limits_{j = 1}^{J} {\mu_{mj} } = 0;\;\;m = 1, \ldots ,M; \\ \,& \quad \sum\limits_{{j^{\prime } = 1}}^{J} {\gamma_{{jj^{\prime } }} } - \sum\limits_{m = 1}^{M} {\mu_{mj} } = 0;\;j = 1, \ldots ,J;\;\sum\limits_{m = 1}^{M} {\delta_{nm} } - \sum\limits_{j = 1}^{J} {\eta_{nj} } = 0;\;\;n = 1, \ldots ,N; \\ \,& ({\text{vi}}) \, \alpha_{{nn^{\prime } }} = \alpha_{{n^{\prime } n}} ;\;\beta_{{mm^{\prime } }} = \beta_{{m^{\prime } m}} ;m \ne m^{\prime } ,\gamma_{{jj^{\prime } }} = \gamma_{{j^{\prime } j}} ,\;\;j \ne j^{\prime } \\ \end{aligned} $$
(9)

Equation 9: Nonlinear program to minimize the sum of the distance between the production frontier and individual observations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molinos-Senante, M., Hernández-Sancho, F., Sala-Garrido, R. et al. Economic Feasibility Study for Phosphorus Recovery Processes. AMBIO 40, 408–416 (2011). https://doi.org/10.1007/s13280-010-0101-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-010-0101-9

Keywords

Navigation