Skip to main content
Log in

Focal Image Plane Detection Based on Central Coordinate Point Spectral Value in Off-Axis Digital Particle Holography

  • 3DR Express
  • Published:
3D Research

Abstract

A method to detect the focal image plane from a single off-axis digital particle hologram is proposed. This method utilizes the central coordinate point spectral value of the reconstructed particle image as focusing criterion to detect the focal image plane. It is found that the central coordinate point spectral values come into maximum when the reconstruction distance is equal to the actual distance that was used in experiment of hologram acquisition. Numerical simulations are given to validate the feasibility and effectiveness of the proposed method. The proposed method is a potential and better option for studying three dimensional particles by using digital holography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schnars, U., & Jüptner, W. (1994). Direct recording of holograms by a CCD target and numerical reconstruction. Applied Optics, 33(2), 179–181.

    Article  Google Scholar 

  2. Osten, W., Faridian, A., Gao, P., Körner, K., Naik, D., Pedrini, G., et al. (2014). Recent advances in digital holography. Applied Optics, 53(27), G44–G63.

    Article  Google Scholar 

  3. Memmolo, P., Bianco, V., Merola, F., Miccio, L., Paturzo, M., & Ferraro, P. (2014). Breakthrough in photonics 2013: Holographic imaging. IEEE Photonics Journal, 6(2), 0701106.

    Article  Google Scholar 

  4. Pedrini, G., Fröning, P., Tiziani, H., & Mendoza Santoyo, F. (1999). Shape measurement of microscopic structures using digital holograms. Optics Communication, 164(4), 257–268.

    Article  Google Scholar 

  5. Yamaguchi, I., Ohta, S., & Kato, J. (2001). Surface contouring by phase-shifting digital holography. Journal of Optics and Lasers in Engineering, 36(5), 417–428.

    Article  Google Scholar 

  6. Marquet, P., Rappaz, B., Magistretti, P. J., Cuche, E., Emery, Y., Colomb, T., & Depeursinge, C. (2005). Digital holographic microscopy: A noninvasive contrast imaging technique allowing quantitative visualization of living cells with sub-wavelength axial accuracy. Optics Letters, 30(5), 468–470.

    Article  Google Scholar 

  7. Kemper, B., & Von, Bally G. (2008). Digital holographic microscopy for live cell applications and technical inspection. Applied Optics, 47(4), A52–A61.

    Article  Google Scholar 

  8. Mann, C., Yu, L., Lo, C. M., & Kim, M. (2005). High-resolution quantitative phase-contrast microscopy by digital holography. Optics Express, 13(22), 8693–8698.

    Article  Google Scholar 

  9. Pan, G., & Meng, H. (2003). Digital holography of particle fields: Reconstruction by use of complex amplitude. Applied Optics, 42(5), 827–833.

    Article  Google Scholar 

  10. Sheng, J., Malkiel, E., & Katz, J. (2006). Digital holographic microscope for measuring three-dimensional particle distributions and motions. Applied Optics, 45(16), 3893–3901.

    Article  Google Scholar 

  11. Cheong, F. C., Krishnatreya, B. J., & Grier, D. G. (2010). Strategies for three-dimensional particle tracking with holographic video microscopy. Optics Express, 18(13), 13563–13573.

    Article  Google Scholar 

  12. Memmolo, P., Miccio, L., Finizio, A., Netti, P. A., & Ferraro, P. (2014). Holographic tracking of living cells by three-dimensional reconstructed complex wavefronts alignment. Optics Letters, 39(9), 2759–2762.

    Article  Google Scholar 

  13. Javidi, B., & Nomura, T. (2000). Securing information by use of digital holography. Optics Letters, 25(1), 28–30.

    Article  Google Scholar 

  14. Tajahuerce, E., & Javidi, B. (2000). Encrypting three-dimensional information with digital holography. Applied Optics, 39(35), 6595–6601.

    Article  Google Scholar 

  15. Nomura, T., & Javidi, B. (2007). Object recognition by use of polarimetric phase-shifting digital holography. Optics Letters, 32(15), 2146–2148.

    Article  Google Scholar 

  16. Seelamantula, C. S., Pavillon, N., Depeursinge, C., & Unser, M. (2011). Exact complex-wave reconstruction in digital holography. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 28(6), 983–992.

    Article  Google Scholar 

  17. Langehanenberg, P., Von Bally, G., & Kemper, B. (2011). Autofocusing in digital holographic microscopy. 3D. Research, 2(1), 1–11.

    Google Scholar 

  18. Dubois, F., Schockaert, C., Callens, N., & Yourassowsky, C. (2006). Focus plane detection criteria in digital holography microscopy by amplitude analysis. Optics Express, 14(13), 5895–5908.

    Article  Google Scholar 

  19. Yu, L., & Cai, L. (2001). Iterative algorithm with a constraint condition for numerical reconstruction of a three-dimensional object from its hologram. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 18(5), 1033–1045.

    Article  Google Scholar 

  20. Ma, L. H., Wang, H., Li, Y., & Jin, H. Z. (2004). Numerical reconstruction of digital holograms for three-dimensional shape measurement. Journal of Optics A: Pure and Applied Optics, 6(4), 396–400.

    Article  Google Scholar 

  21. Liebling, M., & Unser, M. (2004). Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 21(12), 2424–2430.

    Article  MathSciNet  Google Scholar 

  22. Memmolo, P., Paturzo, M., Javidi, B., Netti, P. A., & Ferraro, P. (2014). Refocusing criterion via sparsity measurements in digital holography. Optics Letters, 39(16), 4719–4722.

    Article  Google Scholar 

  23. Gao, P., Yao, B., Min, J., Guo, R., Ma, B., Zheng, J., et al. (2012). Autofocusing of digital holographic microscopy based on off-axis illuminations. Optics Letters, 37(17), 3630–3632.

    Article  Google Scholar 

  24. Yang, Y., Kang, B., & Choo, Y. (2008). Application of the correlation coefficient method for determination of the focal plane to digital particle holography. Applied Optics, 47(6), 817–824.

    Article  Google Scholar 

  25. Langehanenberg, P., Kemper, B., Dirksen, D., & Von Bally, G. (2008). Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. Applied Optics, 47(19), D176–D182.

    Article  Google Scholar 

  26. Li, W., Loomis, N. C., Hu, Q., & Davis, C. S. (2007). Focus detection from digital in-line holograms based on spectral l 1 norms. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 24(10), 3054–3062.

    Article  Google Scholar 

  27. Lee, S., Lee, J. Y., Yang, W. Z., & Kim, D. Y. (2009). Autofocusing and edge detection schemes in cell volume measurements with quantitative phase microscopy. Optics Express, 17(8), 6476–6486.

    Article  Google Scholar 

  28. El Mallahi, A., & Dubois, F. (2011). Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy. Optics Express, 19(7), 6684–6698.

    Article  Google Scholar 

  29. Leith, E. N., & Upatnieks, J. (1962). Reconstructed wavefronts and communication theory. Journal of the Optical Society of America, 52(10), 1123–1128.

    Article  Google Scholar 

  30. Cuche, E., Marquet, P., & Depeursinge, C. (1999). Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Applied Optics, 38(34), 6994–7001.

    Article  Google Scholar 

  31. Liebling, M., Blu, T., & Unser, M. (2004). Complex-wave retrieval from a single off-axis hologram. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 21(3), 367–377.

    Article  Google Scholar 

  32. Singh, V. R., Gopalkrishna, H., & Anand, A. (2009). Particle field imaging using digital in-line holography. Current Science, 96(3), 391–397.

    Google Scholar 

  33. Ferraro, P., De Nicola, S., Coppola, G., Finizio, A., Alfieri, D., & Pierattini, G. (2004). Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms. Optics Letters, 29(8), 854–856.

    Article  Google Scholar 

  34. Murata, S., & Yasuda, N. (2000). Potential of digital holography in particle measurement. Optics & Laser Technology, 32(7), 567–574.

    Article  Google Scholar 

  35. El Mallahi, A., & Dubois, F. (2013). Separation of overlapped particles in digital holographic microscopy. Optics Express, 21(5), 6466–6479.

    Article  Google Scholar 

  36. Goodman, J. W. (1996). Introduction to Fourier Optics (2nd ed., pp. 76–77). New York: McGraw-Hill.

    Google Scholar 

  37. Memmolo, P., Distante, C., Paturzo, M., Finizio, A., Ferraro, P., & Javidi, B. (2011). Automatic focusing in digital holography and its application to stretched holograms. Optics Letters, 36(10), 1945–1947.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No.61204068 and Zhejiang Provincial Natural Science Foundation of China under Grant No.LY15F040002 and No.LQ14E020002. And we also thank the reviewers and editors for their useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peizhen Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, P., Deng, L. & Lu, W. Focal Image Plane Detection Based on Central Coordinate Point Spectral Value in Off-Axis Digital Particle Holography. 3D Res 6, 39 (2015). https://doi.org/10.1007/s13319-015-0071-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-015-0071-6

Keywords

Navigation