Skip to main content
Log in

A Survey of Image Encryption Algorithms

  • 3DR Review
  • Published:
3D Research

Abstract

Security of data/images is one of the crucial aspects in the gigantic and still expanding domain of digital transfer. Encryption of images is one of the well known mechanisms to preserve confidentiality of images over a reliable unrestricted public media. This medium is vulnerable to attacks and hence efficient encryption algorithms are necessity for secure data transfer. Various techniques have been proposed in literature till date, each have an edge over the other, to catch-up to the ever growing need of security. This paper is an effort to compare the most popular techniques available on the basis of various performance metrics like differential, statistical and quantitative attacks analysis. To measure the efficacy, all the modern and grown-up techniques are implemented in MATLAB-2015. The results show that the chaotic schemes used in the study provide highly scrambled encrypted images having uniform histogram distribution. In addition, the encrypted images provided very less degree of correlation coefficient values in horizontal, vertical and diagonal directions, proving their resistance against statistical attacks. In addition, these schemes are able to resist differential attacks as these showed a high sensitivity for the initial conditions, i.e. pixel and key values. Finally, the schemes provide a large key spacing, hence can resist the brute force attacks, and provided a very less computational time for image encryption/decryption in comparison to other schemes available in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. The next tier, 8 security predictions for 2017. https://www.trendmicro.ae/vinfo/ae/security/research-and-analysis/predictions/2017.

  2. Bourbakis, N., & Alexopoulos, C. (1992). Picture data encryption using scan patterns. Pattern Recognition, 25, 567–581. https://doi.org/10.1016/0031-3203(92)90074-S.

    Article  Google Scholar 

  3. Chang, C. C., Hwang, M. S., & Chen, T. S. (2001). A new encryption algorithm for image cryptosystems. Journal of Systems and Software, 58, 83–91. https://doi.org/10.1016/S0164-1212(01)00029-2.

    Article  Google Scholar 

  4. Liu, Z., Guo, Q., Xu, L., Ahmad, M. A., & Liu, S. (2010). Double image encryption by using iterative random binary encoding in gyrator domains. Optics Express, 18, 12033–12043. https://doi.org/10.1364/OE.18.012033.

    Article  Google Scholar 

  5. Tayal, N., Bansal, R., Gupta, S., & Dhall, S. (2016). Analysis of various cryptography techniques: A survey. International Journal of Security and Its Applications, 10, 59–92. https://doi.org/10.14257/ijsia.2016.10.8.07.

    Article  Google Scholar 

  6. Zhang, G., & Liu, Q. (2011). A novel image encryption method based on total shuffling scheme. Optics Communications, 284, 2775–2780. https://doi.org/10.1016/j.optcom.2011.02.039.

    Article  Google Scholar 

  7. Biham, E., & Shamir, A. (1993). Differential cryptanalysis of the Data Encryption Standard. Springer. http://www.cs.technion.ac.il/~biham/Reports/differential-cryptanalysis-of-the-data-encryption-standard-biham-shamir-authors-latex-version.pdf.

  8. Zeghid, M., Machhout, M., Khriji, L., Baganne, A., & Tourki, R. (2007). A modified AES based algorithm for image encryption. International Journal of Computer and Information Engineering, 1(3), 745–750. http://scholar.waset.org/1307-6892/7580.

  9. Chen, G., Mao, Y., & Chui, C. K. (2004). A symmetric image encryption based on 3D chaotic maps. Chaos, Solitons & Fractals, 21, 749–761. https://doi.org/10.1016/j.chaos.2003.12.022.

    Article  MathSciNet  MATH  Google Scholar 

  10. Dang, P. P., & Chau, P. M. (2000). Image encryption for secure internet multimedia applications. IEEE Transactions on Consumer Electronics, 46, 395–403. https://doi.org/10.1109/30.883383.

    Article  Google Scholar 

  11. Younes, M. A. B., & Jantan, A. (2008). Image encryption using block-based transformation algorithm. International Journal of Computer Science, 35, 407–415. http://www.iaeng.org/IJCS/issues_v35/issue_1/IJCS_35_1_03.pdf.

  12. Yun-peng, Z., Zheng-jun, Z., Wei, L., Xuan, N., Shui-ping, C., & Wei-di, D. (2009). Digital image encryption algorithm based on chaos and improved DES. In IEEE international conference on systems, man, and cybernetics (pp. 474–479). https://doi.org/10.1109/ICSMC.2009.5346839.

  13. Akhshani, A., Akhavan, A., Lim, S. C., & Hassan, Z. (2012). An image encryption scheme based on quantum logistic map. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4653–4661. https://arxiv.org/pdf/1307.7786.

  14. García-Martínez, M., Denisenko, N., Soto, D., Arroyo, D., Orue, A., & Fernandez, V. (2013). High-speed free-space quantum key distribution system for urban daylight applications. Applied Optics, 52, 3311–3317. http://www.opticsinfobase.org/ao/upcomingpdf.cfm?id=185412.

  15. Vidal, G., Baptista, M. S., & Mancini, H. (2012). Fundamentals of a classical chaos-based cryptosystem with some quantum cryptography features. International Journal of Bifurcation and Chaos, 22, Article number 1250243.

  16. Kester, Q. A. (2013). A hybrid cryptosystem based on Vigenère cipher and columnar transposition cipher. International Journal of Advanced Technology & Engineering Research, 3, 141–147. https://arxiv.org/ftp/arxiv/papers/1307/1307.7786.pdf.

  17. Matthews, R. (1989). On the derivation of a “chaotic” encryption algorithm. Cryptologia, 14, 29–42. https://doi.org/10.1080/0161-118991863745.

    Article  MathSciNet  Google Scholar 

  18. Mousa, A., & Hamad, A. (2006). Evaluation of the RC4 algorithm for data encryption. International Journal of Computer Science & Applications, 3, 44–56. http://www.tmrfindia.org/ijcsa/v3i24.pdf.

  19. Matsui, M. (1994). The first experimental cryptanalysis of the Data Encryption Standard. Advances in cryptology—CRYPTO’94 (pp. 1–11). https://doi.org/10.1007/3-540-48658-5_1.

  20. Basu, S. (2011). International Data Encryption Algorithm (IDEA)—A typical illustration. Journal of Global Research in Computer Science, 2, 116–118. http://www.rroij.com/open-access/international-data-encryption-algorithm-idea-a-typical-illustration-116-118.pdf.

  21. Schneier, B. (1994). The Blowfish encryption algorithm. Dr. Dobb’s Journal, 19, 38–40. http://www.drdobbs.com/security/the-blowfish-encryption-algorithm/184409216.

  22. Mandal, S., Das, S., & Nath, A. (2014). Data hiding and retrieval using visual cryptography. International Journal of Innovative Research in Advanced Engineering, 1, 102–110. http://ijirae.com/images/downloads/vol1issue2/ACS10107.April14.19.pdf.

  23. Rivest, R. L. (1995). RC5 encryption algorithm. Dr Dobb’s Journal, 226, 146–148. http://www.drdobbs.com/security/the-rc5-encryption-algorithm/184409480.

  24. Li, C., Li, S., Asim, M., Nunez, J., Alvarez, G., & Chen, G. (2009). On the security defects of an image encryption scheme. Image and Vision Computing, 27, 1371–1381. https://doi.org/10.1016/j.imavis.2008.12.008.

    Article  Google Scholar 

  25. Ahmed, H. E. H., Kalash, H. M., & Farag Allah, O. S. (2007). Encryption efficiency analysis and security evaluation of RC6 block cipher for digital images. In International Conference on Electrical Engineering, 2007 (pp. 1–7). https://doi.org/10.1109/ICEE.2007.4287293.

  26. Barker, W. C., & Barker, E. (2012). Recommendation for the Triple Data Encryption Algorithm (TDEA) block cipher. National Institute of Standards and Technology, Special Publication (pp. 800–867). https://doi.org/10.6028/NIST.SP.800-67r1.

  27. Rayarikar, R., Upadhyay, S., & Pimpale, P. (2012). SMS encryption using AES algorithm on android. International Journal of Computer Applications, 50, 12–17. http://research.ijcaonline.org/volume50/number19/pxc3881038.pdf.

  28. Sam, I. S., Devaraj, P., & Bhuvaneswaran, R. S. (2012). An intertwining chaotic maps based image encryption scheme. Nonlinear Dynamics, 69, 1995–2007. https://doi.org/10.1007/s11071-012-0402-6.

    Article  MathSciNet  Google Scholar 

  29. François, M., Grosges, T., Barchiesi, D., & Erra, R. (2012). A new image encryption scheme based on a chaotic function. Signal Processing: Image Communication, 27, 249–259. https://doi.org/10.1016/j.image.2011.11.003.

    MATH  Google Scholar 

  30. Sam, I. S., Devaraj, P., & Bhuvaneswaran, R. S. (2012). A novel image cipher based on mixed transformed logistic maps. Multimedia Tools and Applications, 56, 315–330. https://doi.org/10.1007/s11042-010-0652-6.

    Article  Google Scholar 

  31. Hanchinamani, G., & Kulkarni, L. (2015). An efficient image encryption scheme based on a Peter De Jong chaotic map and a RC4 stream cipher. 3D Research. https://doi.org/10.1007/s13319-015-0062-7.

    Google Scholar 

  32. Bansal, R., Gupta, S., & Sharma, G. (2016). An innovative image encryption scheme based on chaotic map and Vigenère scheme. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-016-3926-9.

    Google Scholar 

  33. Anderson, T. W. (1958). An introduction to multivariate statistical analysis. New York: Wiley.

    MATH  Google Scholar 

  34. Anuradha, K., & Naik, P. P. S. (2015). Medical image cryptanalysis using histogram matching bitplane and adjoin mapping algorithms. International Journal & Magazine of Engineering, Technology, Management and Research, 2, 100–105. http://www.ijmetmr.com/oloctober2015/KolakaluriAnuradha-PPeddaSadhuNaik-13.pdf.

  35. Karuvandan, V., Chellamuthu, S., & Periyasamy, S. (2016). Cryptanalysis of AES-128 and AES-256 block ciphers using Lorenz information measure. The International Arab Journal of Information Technology, 13, 306–312. http://ccis2k.org/iajit/PDF/Vol.13,%20No.3/5373.pdf.

  36. Pareek, N. K., Patidar, V., & Sud, K. K. (2006). Image encryption using chaotic logistic map. Image and Vision Computing, 24, 926–934. https://doi.org/10.1016/j.imavis.2006.02.021.

    Article  Google Scholar 

  37. Li, S., Zhao, Y., Qu, B., & Wang, J. (2012). Image scrambling based on chaotic sequences and Veginère cipher. Multimedia Tools and Applications, 66, 573–588. https://doi.org/10.1007/s11042-012-1281-z.

    Article  Google Scholar 

  38. Xu, S., Wang, Y., & Wang, J. (2008). Cryptanalysis of two chaotic image encryption schemes based on permutation and XOR operations. In International conference on computational intelligence and security (pp. 433–437). https://doi.org/10.1109/CIS.2008.146.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailender Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, M., Gupta, S. & Sardana, P. A Survey of Image Encryption Algorithms. 3D Res 8, 37 (2017). https://doi.org/10.1007/s13319-017-0148-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-017-0148-5

Keywords

Navigation