Skip to main content
Log in

Symmetric Cryptosystem Based on Chaos Structured Phase Masks and Equal Modulus Decomposition Using Fractional Fourier Transform

  • 3DR Express
  • Published:
3D Research

Abstract

Chaotic structured phase masks (CSPM), equal modulus decomposition (EMD) and fractional Fourier transform are potentially proposed to design the effective symmetric cryptosystem. The encryption and decryption process of our proposed system is completely established by using double random phase encoding (DRPE) in fractional Fourier domain. Frequently, random phase mask (RPM) are used routinely as secret key in most of the DRPE schemes. Nevertheless, RPM are not optimally robust against many attacks. Henceforth, this method utilises chaotic structured phase masks in the place of random phase masks (RPM). CSPM are assembled with the help of logistic map, Fresnel zone plates (FZP) and radial Hilbert mask (RHM) functions. To design an effectual trap door one-way function, equal modulus decomposition (EMD) is performed for encryption and decryption procedure of our cryptosystem. Various asymmetric cryptosystem was designed for EMD; but constructing EMD effectively in symmetric cryptosystem based on chaos structured phase masks and fractional Fourier transform is considered as a novel work and it is employed. As a result, the proposed symmetric cryptosystem attains high robust and withstand many attacks. Numerical simulations are exhibited in order to validate our system and support the fact that our EMD and CSPM based cryptosystem is extremely suitable for securing images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Refregier, P., & Javidi, B. (1995). Optical image encryption based on input plane and Fourier plane random encoding”. Optics Letters, 20(7), 767–769.

    Article  Google Scholar 

  2. Javidi, B. (Ed.). (2005). Optical and digital techniques for information security. Berlin: Springer.

    Google Scholar 

  3. Singh, K., Unnikrishnan, G., & Nishchal, N. K. (2002). Photorefractive optical processing for data security. Proceedings of SPIE., 4803, 205–219.

    Article  Google Scholar 

  4. Javidi, B. et al. (2016). Roadmap on optical security. Journal of Optics, 18, 083001.

    Article  Google Scholar 

  5. Alfalou, A., & Brosseau, C. (2009). Optical image compression and encryption methods. Advances in Optics and Photonics, 1(3), 589–636.

    Article  Google Scholar 

  6. Matoba, O., Nomura, T., Perez-Cabre, E., Millan, M. S., & Javidi, B. (2009). Optical techniques for information security. Proceedings of the IEEE, 97(6), 1128–1148.

    Article  Google Scholar 

  7. Glückstad, J., & Palima, D. (2009). Generalized phase contrast. Netherlands: Springer.

    Book  Google Scholar 

  8. Garcia-Varela, M. S. M., & Perez-Cabre, E. (2011). Optical data encryption, 33. In G. Cristobal, P. Schelkens, & H. Thienpont (Eds.), Optical and digital image processing: Fundamentals and applications (pp. 739–767). New York: Wiley.

    Chapter  Google Scholar 

  9. Kumar, A., Singh, M., & Singh, K. (2011). Speckle coding for optical and digital data security applications. Advances in Speckle Metrology and Related Techniques. https://doi.org/10.1002/9783527633852.ch6

    Article  Google Scholar 

  10. Unnikrishnan, G., Joseph, J., & Singh, K. (2000). Optical encryption by double-random phase encoding in the fractional Fourier domain. Optics Letters, 25(12), 887–889.

    Article  Google Scholar 

  11. Hennelly, B. M., & Sheridan, J. T. (2003). Image encryption and the fractional Fourier transform. Optik-International Journal for light and Electron optics, 114(6), 251–265.

    Article  Google Scholar 

  12. Nishchal, N. K., Joseph, J., & Singh, K. (2003). Fully phase encryption using fractional Fourier transform. Optical Engeering, 42(6), 1583–1589.

    Article  Google Scholar 

  13. Liu, Z., Xu, L., Lin, C., Dai, J., & Liu, S. (2011). Image encryption scheme by using iterative random phase encoding in gyrator transform domains. Optics and Lasers in Engineering, 49(4), 542–546.

    Article  Google Scholar 

  14. Situ, G., & Zhang, J. (2004). Double random-phase encoding in the Fresnel domain. Optics Letters, 29(14), 1584–1586.

    Article  Google Scholar 

  15. Zhou, N., Wang, Y., Gong, L., Chen, X., & Yang, Y. (2012). Novel color image encryption algorithm based on the reality preserving fractional Mellin transform. Optics & Laser Technology, 44(7), 2270–2281.

    Article  Google Scholar 

  16. Vashisth, S., Singh, H., Yadav, A. K., & Singh, K. (2014). Image encryption using fractional Mellin transform, structured phase filters, and phase retrieval. Optik-International Journal for Light and Electron Optics, 125(18), 5309–5315.

    Article  Google Scholar 

  17. Abuturab, M. R. (2017). Securing multiple information using chaotic spiral phase encoding with simultaneous interference and superposition methods. Optics and Lasers in Engineering, 98, 1–16.

    Article  Google Scholar 

  18. Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2014). Fully phase image encryption using double random-structured phase masks in gyrator domain. Applied Optics, 53(28), 6472–6481.

    Article  Google Scholar 

  19. Barrera, J. F., Henao, R., & Torroba, R. (2005). Optical encryption method using Toroidal zone plates. Optics Communication, 248, 35–40.

    Article  Google Scholar 

  20. Cai, J., Shen, X., Lei, M., Lin, C., & Dou, S. (2015). Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Optics Letters, 40(4), 475–478.

    Article  Google Scholar 

  21. Carnicer, A., Montes-Usategui, M., Arcos, S., & Juvells, I. (2005). Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys. Optics Letters, 30(13), 1644–1646.

    Article  Google Scholar 

  22. Peng, X., Zhang, P., Wei, H., & Yu, B. (2006). Known-plaintext attack on optical encryption based on double random phase keys. Optics Letters, 31(8), 1044–1046.

    Article  Google Scholar 

  23. Peng, X., Wei, H., & Zhang, P. (2006). Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain. Optics Letters, 31(22), 3261–3263.

    Article  Google Scholar 

  24. Gopinathan, U., Monaghan, D. S., Naughton, T. J., & Sheridan, J. T. (2006). A known-plaintext heuristic attack on the Fourier plane encryption algorithm. Optics Express, 14(8), 3181–3186.

    Article  Google Scholar 

  25. Wang, X., & Zhao, D. (2011). Security enhancement of a phase-truncation based image encryption algorithm. Applied Optics, 50(36), 6645–6651.

    Article  Google Scholar 

  26. Ding, X., Deng, X., Song, K., & Chen, G. (2013). Security improvement for asymmetric cryptosystem based on spherical wave illumination. Applied optics, 52(3), 467–473.

    Article  Google Scholar 

  27. Wang, X., & Zhao, D. (2012). A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms. Optics Communication, 285(6), 1078–1081.

    Article  Google Scholar 

  28. Liu, H., & Wang, X. (2010). Color image encryption based on one-time keys and robust chaotic maps. Computers & Mathematics with Applications, 59(10), 3320–3327.

    Article  MathSciNet  Google Scholar 

  29. Wang, X. Y., Yang, L., Liu, L. R., & Kadir, A. (2010). A chaotic image encryption algorithm based on perceptron model. Nonlinear Dynamics, 62(3), 615–621.

    Article  MathSciNet  Google Scholar 

  30. Liu, H., & Wang, X. (2011). Color image encryption using spatial bit-level permutation and high-dimension chaotic system. Optics Communications, 284(16–17), 3895–3903.

    Article  Google Scholar 

  31. Liu, H., & Wang, X. (2012). Image encryption using DNA complementary rule and chaotic maps. Applied Soft Computing, 12(5), 1457–1466.

    Article  Google Scholar 

  32. Wang, X. Y., Zhang, Y. Q., & Bao, X. M. (2015). A novel chaotic image encryption scheme using DNA sequence operations. Optics and Lasers in Engineering, 73, 53–61.

    Article  Google Scholar 

  33. Wang, X., Liu, L., & Zhang, Y. (2015). A novel chaotic block image encryption algorithm based on dynamic random growth technique. Optics and Lasers in Engineering, 66, 10–18.

    Article  Google Scholar 

  34. Zhang, Y. Q., & Wang, X. Y. (2015). A new image encryption algorithm based on non-adjacent coupled map lattices. Applied Soft Computing, 26, 10–20.

    Article  Google Scholar 

  35. Yadav A.K., Vashisth S., Singh H., Singh K. (2015) Optical cryptography and watermarking using some fractional canonical transforms, and structured masks. In V. Lakshminarayanan & I. Bhattacharya (Eds.), Advances in Optical Science and Engineering (Vol. 166). Springer Proceedings in Physics. Springer.

  36. Sui, L., Duan, K., Liang, J., & Hei, X. (2014). Asymmetric double-image encryption based on cascaded discrete fractional random transform and logistic maps. Optics Express, 22(9), 10605–10621.

    Article  Google Scholar 

  37. Vilardy, J. M., Jimenez, C. J., & Perez, R. (2017). Image encryption using the Gyrator transform and random phase masks generated by using chaos. In Journal of Physics: Conference Series (Vol. 850, No. 1, p. 012012). IOP Publishing.

  38. Liansheng, S., Bei, Z., Xiaojuan, N., & Ailing, T. (2016). Optical multiple-image encryption based on the chaotic structured phase masks under the illumination of a vortex beam in the gyrator domain. Optics Express, 24(1), 499–515.

    Article  Google Scholar 

  39. Cai, J., Shen, X., & Lin, C. (2016). Security-enhanced asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Optics Communication, 359, 26–30.

    Article  Google Scholar 

  40. Wang, Y., Quan, C., & Tay, C. J. (2016). New method of attack and security enhancement on an asymmetric cryptosystem based on equal modulus decomposition. Applied Optics, 55(4), 679–686.

    Article  Google Scholar 

  41. Kumar, R., Bhaduri, B., & Nishchal, N. K. (2017). Nonlinear QR code based optical image encryption using spiral phase transform, equal modulus decomposition and singular value decomposition. Journal of Optics, 20(1), 015701.

    Article  Google Scholar 

  42. Fatima, A., Mehra, I., & Nishchal, N. K. (2016). Optical image encryption using equal modulus decomposition and multiple diffractive imaging. Journal of Optics, 18(8), 085701.

    Article  Google Scholar 

  43. Chen, H., Tanougast, C., Liu, Z., & Sieler, L. (2017). Asymmetric optical cryptosystem for color image based on equal modulus decomposition in gyrator transform domains. Optics and Lasers in Engineering, 93, 1–8.

    Article  Google Scholar 

  44. Cai, J., & Shen, X. (2017). Modified optical asymmetric image cryptosystem based on coherent superposition and equal modulus decomposition. Optics & Laser Technology, 95, 105–112.

    Article  Google Scholar 

  45. Unnikrishnan, G., & Singh, K. (2000). Double random fractional Fourier domain encoding for optical security. Optical Engineering, 39(11), 2853–2860.

    Article  Google Scholar 

  46. Garcia, J., Mas, D., & Dorsch, R. G. (1996). Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm. Applied Optics, 35(35), 7013–7018.

    Article  Google Scholar 

  47. Barfungpa, S. P., & Abuturab, M. R. (2016). Asymmetric cryptosystem using coherent superposition and equal modulus decomposition of fractional Fourier spectrum. Optical and Quantum Electronics, 48(11), 520.

    Article  Google Scholar 

  48. Kumar, R., Bhaduri, B., & Quan, C. (2017). Asymmetric optical image encryption using Kolmogorov phase screens and equal modulus decomposition. Optical Engineering, 56(11), 113109.

    Article  Google Scholar 

  49. Khurana, M., & Singh, H. (2017). An asymmetric image encryption based on phase truncated hybrid transform. 3D Research, 8(3), 28.

    Article  Google Scholar 

  50. Zamrani, W., Ahouzi, E., Lizana, A., Campos, J., & Yzuel, M. J. (2016). Optical image encryption technique based on deterministic phase masks. Optical Engineering55(10), 103108.

    Article  Google Scholar 

  51. Girija, R., & Singh, H. (2018). A cryptosystem based on deterministic phase masks and fractional Fourier transform deploying singular value decomposition. Optical and Quantum Electronics50(5), 210.

    Article  Google Scholar 

  52. Girija, R., & Singh, H. (2018). Design of a novel pseudo random generator based on Walsh Hadamard transform and Bi S-boxes. Procedia Computer Science, 132, 795–804.

    Article  Google Scholar 

  53. Zhang, Y. Q., & Wang, X. Y. (2014). A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice. Information Sciences, 273, 329–351.

    Article  Google Scholar 

  54. Singh, H. (2016). Cryptosystem for securing image encryption using structured phase masks in Fresnel wavelet transform domain. 3D Research, 7(34), 1–18.

    Google Scholar 

  55. Li, Shujun, Li, Chengqing, & Lo, Kwok-Tung. (2008). Cryptanalysis of an image scrambling scheme without bandwidth expansion. IEEE Transactions on Circuits and Systems for Video Technology, 18(3), 338–349.

    Article  Google Scholar 

  56. Wang, X., Teng, L., & Qin, X. (2012). A novel colour image encryption algorithm based on chaos. Signal Processing, 92(4), 1101–1108.

    Article  MathSciNet  Google Scholar 

  57. Girija, R., & Singh, H. (2018). Enhancing security of double random phase encoding based on random S-Box. 3D Research, 9, 15(1-20).

    Google Scholar 

  58. Yadav, P. L., & Singh, H. (2018). Optical double image hiding in the fractional Hartley transform using structured phase filter and Arnold transform. 3D Research, 9(20), 1–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Girija.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girija, R., Singh, H. Symmetric Cryptosystem Based on Chaos Structured Phase Masks and Equal Modulus Decomposition Using Fractional Fourier Transform. 3D Res 9, 42 (2018). https://doi.org/10.1007/s13319-018-0192-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-018-0192-9

Keywords

Navigation