Skip to main content

Advertisement

Log in

Microemulsion-based antifungal gel delivery to nail for the treatment of onychomycosis: formulation, optimization, and efficacy studies

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Onychomycosis is the most common nail disease affecting nail plate and nail bed. Onychomycosis causes onycholysis which creates cavity between the nail plate and nail bed, where drug formulations could be applied, providing a direct contact of drug with the nail bed facilitating drug delivery on the infected area. The purpose of the present study was to design and evaluate the potential of microemulsion-based gel as colloidal carrier for itraconazole for delivery into onycholytic nails for effective treatment of onychomycosis. Itraconazole-loaded microemulsions were prepared and optimized using D-optimal design. The microemulsion containing 6.24 % oil, 36 % Smix, and 57.76 % water was selected as the optimized batch (MEI). The globule size and drug loading of the optimized batch were 48.2 nm and 12.13 mg/ml, respectively. Diffused reflectance FTIR studies were performed to study drug–excipient incompatibility. Ex vivo permeation studies were carried out using bovine hoof and human cadaver skin as models for nail plate and nail bed, respectively. Microemulsion-based itraconazole gel (MBGI) showed better penetration and retention in human skin as well as bovine hoof as compared to commercial preparation (market formulation, MFI). The cumulative amount of itraconazole permeated from the MBGI after 12 h was 73.39 ± 3.55 μg cm−2 which was 1.8 times more than MF. MBGI showed significantly higher ex vivo antifungal activity (P < 0.05) against Candida albicans and Trichophyton rubrum when compared to MFI. Stability studies showed that MBGI was stable at refrigeration and room temperature for 3 months. It was concluded that drug-loaded gel could be a promising formulation for effective treatment of onychomycosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gupta AK, Simpson FC. New therapeutic options for onychomycosis. Expert Opin Pharmacother. 2012;13(8):1131–42.

    Article  PubMed  CAS  Google Scholar 

  2. Grover C, Khurana A. Onychomycosis: newer insights in pathogenesis and diagnosis. Indian J Dermatol Venereol Leprol. 2012;78(3):263–70.

    Article  PubMed  Google Scholar 

  3. Baran R, Kaoukhov A. Topical antifungal drugs for the treatment of onychomycosis: an overview of current strategies for monotherapy and combination therapy. J Eur Acad Dermatol Venereol. 2005;19:21–9.

    Article  PubMed  CAS  Google Scholar 

  4. Baran R, Gupta AK, Pierard GE. Pharmacotherapy of onychomycosis. Expert Opin Pharmacother. 2005;6(4):609–24.

    Article  PubMed  CAS  Google Scholar 

  5. Arrese JE, Pierard GE. Treatment failures and relapses in onychomycosis: a stubborn clinical problem. Dermatology. 2003;207(3):255–60.

    Article  PubMed  Google Scholar 

  6. Kobayashi Y, Miyamoto M, Sugibayashi K, Morimoto Y. Drug permeation through the three layers of the human nail plate. J Pharm Pharmacol. 1999;51(3):271–8.

    Article  PubMed  CAS  Google Scholar 

  7. Murdan S. Drug delivery to the nail following topical application. Int J Pharm. 2002;236(1–2):1–26.

    Article  PubMed  CAS  Google Scholar 

  8. Amichai B, Nitzan B, Mosckovitz R, Shemer A. Iontophoretic delivery of terbinafine in onychomycosis: a preliminary study. Br J Dermatol. 2010;162(1):46–50.

    Article  PubMed  CAS  Google Scholar 

  9. Sachdeva V, Siddoju S, Yu YY, Kim HD, Friden PM, Banga AK. Transdermal iontophoretic delivery of terbinafine hydrochloride: quantitation of drug levels in stratum corneum and underlying skin. Int J Pharm. 2010;388(1–2):24–31.

    Article  PubMed  CAS  Google Scholar 

  10. Nair AB, Vaka SR, Sammeta SM, Kim HD, Friden PM, Chakraborty B, et al. Trans-ungual iontophoretic delivery of terbinafine. J Pharm Sci. 2009;98(5):1788–96.

    Article  PubMed  CAS  Google Scholar 

  11. Murdan S. Enhancing the nail permeability of topically applied drugs. Expert Opin Drug Deliv. 2008;5(11):1267–82.

    Article  PubMed  CAS  Google Scholar 

  12. Barot BS, Parejiya PB, Patel HK, Gohel MC, Shelat PK. Microemulsion-based gel of terbinafine for the treatment of onychomycosis: optimization of formulation using D-optimal design. AAPS PharmSciTech. 2012;13(1):184–92.

    Article  PubMed  CAS  Google Scholar 

  13. Heuschkel S, Goebel A, Neubert RHH. Microemulsions-modern colloidal carrier for dermal and transdermal drug delivery. J Pharm Sci. 2008;97(2):603–31.

    Article  PubMed  CAS  Google Scholar 

  14. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45(1):89–121.

    Article  PubMed  CAS  Google Scholar 

  15. Ghosh PK, Murthy RS. Microemulsions: a potential drug delivery system. Curr Drug Deliv. 2006;3(2):167–80.

    Article  PubMed  CAS  Google Scholar 

  16. Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev. 2002;54 Suppl 1:S77–98.

    Article  PubMed  CAS  Google Scholar 

  17. Zhu W, Yu A, Wang W, Dong R, Wu J, Zhai G. Formulation design of microemulsion for dermal delivery of penciclovir. Int J Pharm. 2008;360(1–2):184–90.

    Article  PubMed  CAS  Google Scholar 

  18. Raza K, Negi P, Takyar S, Shukla A, Amarji B, Katare OP. Novel dithranol phospholipid microemulsion for topical application: development, characterization and percutaneous absorption studies. J Microencapsul. 2011;28(3):190–9.

    Article  PubMed  CAS  Google Scholar 

  19. Patel HK, Barot BS, Parejiya PB, Shelat PK, Shukla A. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo: ex vivo permeation and skin irritation studies. Colloids Surf B Biointerfaces. 2013;102(2):86–94.

    Article  Google Scholar 

  20. Zhu W, Guo C, Yu A, Gao Y, Cao F, Zhai G. Microemulsion-based hydrogel formulation of penciclovir for topical delivery. Int J Pharm. 2009;378(1–2):152–8.

    Article  PubMed  CAS  Google Scholar 

  21. Mertin D, Lippold BC. In-vitro permeability of the human nail and of a keratin membrane from bovine hooves: prediction of the penetration rate of antimycotics through the nail plate and their efficacy. J Pharm Pharmacol. 1997;49(9):866–72.

    Article  PubMed  CAS  Google Scholar 

  22. Khengar RH, Jones SA, Turner RB, Forbes B, Brown MB. Nail swelling as a pre-formulation screen for the selection and optimisation of ungual penetration enhancers. Pharm Res. 2007;24(12):2207–12.

    Article  PubMed  CAS  Google Scholar 

  23. Nair AB, Sammeta SM, Kim HD, Chakraborty B, Friden PM, Murthy SN. Alteration of the diffusional barrier property of the nail leads to greater terbinafine drug loading and permeation. Int J Pharm. 2009;375(1–2):22–7.

    Article  PubMed  CAS  Google Scholar 

  24. Hao J, Smith KA, Li SK. Iontophoretically enhanced ciclopirox delivery into and across human nail plate. J Pharm Sci. 2009;98(10):3608–16.

    Article  PubMed  CAS  Google Scholar 

  25. Kumar S, Kimball AB. New antifungal therapies for the treatment of onychomycosis. Expert Opin Investig Drugs. 2009;18(6):727–34.

    Article  PubMed  CAS  Google Scholar 

  26. Nair AB, Kiran Vaka SR, Murthy SN. Transungual delivery of terbinafine by iontophoresis in onychomycotic nails. Drug Dev Ind Pharm. 2011;37(10):1253–8.

    Article  PubMed  CAS  Google Scholar 

  27. Gupta AK, De Doncker P, Scher RK, Haneke E, Daniel 3rd CR, Andre J, et al. Itraconazole for the treatment of onychomycosis. Int J Dermatol. 1998;37(4):303–8.

    Article  PubMed  CAS  Google Scholar 

  28. Kawakami K, Yoshikawa T, Moroto Y, Kanaoka E, Takahashi K, Nishihara Y, et al. Microemulsion formulation for enhanced absorption of poorly soluble drugs. I. Prescription design. J Control Release. 2002;81(1–2):65–74.

    Article  PubMed  CAS  Google Scholar 

  29. Leucuta SE, Bodea A. Optimization of hydrophilic matrix tablets using a D-optimal design. Int J Pharm. 1997;153(2):247–55.

    Article  Google Scholar 

  30. Holm R, Jensen IH, Sonnergaard J. Optimization of self-microemulsifying drug delivery systems (SMEDDS) using a D-optimal design and the desirability function. Drug Dev Ind Pharm. 2006;32(9):1025–32.

    Article  PubMed  CAS  Google Scholar 

  31. Lewis GA, Mathieu D, Phan-Tan-Luu R. Mixtures in a constrained region of interest. In: Swarbrick J, editor. Pharmaceutical experimental design. New York: Marcel Dekker, Inc.; 1999. p. 413–54.

    Google Scholar 

  32. Basketter DA, York M, McFadden JP, Robinson MK. Determination of skin irritation potential in the human 4-h patch test. Contact Dermatitis. 2004;51(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  33. Boelsma E, Tanojo H, Bodde HE, Ponec M. Assessment of the potential irritancy of oleic acid on human skin: evaluation in vitro and in vivo. Toxicol In Vitro. 1996;10(6):729–42.

    Article  PubMed  CAS  Google Scholar 

  34. Barik B, Panigrahi L, Maharana L, Ghosal SK, Pattnaik S. Effect of permeation enhancers on the release and permeation kinetics of Lincomycin hydrochloride gel formulations through mouse skin. Ind J Pharm Sci. 2006;68(2):205–11.

    Article  Google Scholar 

  35. Pople PV, Singh KK. Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis. Int J Pharm. 2010;398(1–2):165–78.

    Article  PubMed  CAS  Google Scholar 

  36. Hui X, Wester RC, Maibach HI, Barbadillo S. Nail penetration—enhance topical delivery of antifungal drugs by chemical modification of the human nail. In: Bronaugh RL, Maibach HI, editors. Percutaneous absorption: drugs-cosmetics-mechanisms-methodology. 4th ed. Boca Raton: Taylor & Francis; 2005. p. 643–53.

    Google Scholar 

  37. Monti D, Saccomani L, Chetoni P, Burgalassi S, Tampucci S, Mailland F. Validation of bovine hoof slices as a model for infected human toenails: in vitro ciclopirox transungual permeation. Br J Dermatol. 2011;165(1):99–105.

    Article  PubMed  CAS  Google Scholar 

  38. Redmann S, Charles BG. A rapid HPLC method with fluorometric detection for determination of plasma itraconazole and hydroxy-itraconazole concentrations in cystic fibrosis children with allergic bronchopulmonary aspergillosis. Biomed Chromatogr. 2006;20(4):343–8.

    Article  PubMed  CAS  Google Scholar 

  39. Larrucea E, Arellano A, Santoyo S, Ygartua P. Combined effect of oleic acid and propylene glycol on the percutaneous penetration of tenoxicam and its retention in the skin. Eur J Pharm Biopharm. 2001;52(2):113–9.

    Article  PubMed  CAS  Google Scholar 

  40. Hua L, Weisan P, Jiayu L, Ying Z. Preparation, evaluation, and NMR characterization of vinpocetine microemulsion for transdermal delivery. Drug Dev Ind Pharm. 2004;30(6):657–66.

    Article  PubMed  CAS  Google Scholar 

  41. Li H, Pan WS, Wu Z, Li JY, Xia LX. Optimization of microemulsion containing vinpocetine and its physicochemical properties. Yao Xue Xue Bao. 2004;39(9):681–5.

    PubMed  CAS  Google Scholar 

  42. Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuja A, et al. Formulation development and optimization using nanoemulsion technique: a technical note. AAPS PharmSciTech. 2007;8(2):E12–7.

    Article  Google Scholar 

  43. Ceschel G, Bergamante V, Maffei P, Borgia SL, Calabrese V, Biserni S, et al. Solubility and transdermal permeation properties of a dehydroepiandrosterone cyclodextrin complex from hydrophilic and lipophilic vehicles. Drug Deliv. 2005;12(5):275–80.

    Article  PubMed  CAS  Google Scholar 

  44. Jain S, Mistry MA, Swarnakar NK. Enhanced dermal delivery of acyclovir using solid lipid nanoparticles. Drug Deliv and Transl Res. 2011;1:395–406.

    Article  CAS  Google Scholar 

  45. Chen H, Chang X, Du D, Li J, Xu H, Yang X. Microemulsion-based hydrogel formulation of ibuprofen for topical delivery. Int J Pharm. 2006;315(1–2):52–8.

    Article  PubMed  CAS  Google Scholar 

  46. Chen H, Mou D, Du D, Chang X, Zhu D, Liu J, et al. Hydrogel-thickened microemulsion for topical administration of drug molecule at an extremely low concentration. Int J Pharm. 2007;341(1–2):78–84.

    Article  PubMed  CAS  Google Scholar 

  47. El Maghraby GM. Transdermal delivery of hydrocortisone from eucalyptus oil microemulsion: effects of cosurfactants. Int J Pharm. 2008;355(1–2):285–92.

    Article  PubMed  Google Scholar 

  48. Huang YB, Lin YH, Lu TM, Wang RJ, Tsai YH, Wu PC. Transdermal delivery of capsaicin derivative-sodium nonivamide acetate using microemulsions as vehicles. Int J Pharm. 2008;349(1–2):206–11.

    Article  PubMed  CAS  Google Scholar 

  49. Peltola S, Saarinen-Savolainen P, Kiesvaara J, Suhonen TM, Urtti A. Microemulsions for topical delivery of estradiol. Int J Pharm. 2003;254(2):99–107.

    Article  PubMed  CAS  Google Scholar 

  50. Trotta M. Influence of phase transformation on indomethacin release from microemulsions. J Control Release. 1999;60(2–3):399–405.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Cadila Pharmaceuticals Ltd. (Ahmedabad, India) for providing Itraconazole; Abitec Corporation (Ohio, USA) for providing Capmul MCM; and Gattefosse (Lyon, France) for providing the free samples of Labrasol, Labrafac, and Transcutol P. The authors are also thankful to Institute of Microbial Technology (Chandigarh, India) for providing the fungal strains. The authors are grateful to Mrs. Mallika Babu for proofreading the manuscript for grammatical and spelling errors. This study is a part of research project, carried out at Kadi Sarva Vishwavidyalaya (Gandhinagar, India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavesh S. Barot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barot, B.S., Parejiya, P.B., Patel, H.K. et al. Microemulsion-based antifungal gel delivery to nail for the treatment of onychomycosis: formulation, optimization, and efficacy studies. Drug Deliv. and Transl. Res. 2, 463–476 (2012). https://doi.org/10.1007/s13346-012-0109-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-012-0109-8

Keywords

Navigation