Skip to main content

Advertisement

Log in

Nanofiber-mediated release of retinoic acid and brain-derived neurotrophic factor for enhanced neuronal differentiation of neural progenitor cells

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The treatment of an injured central nervous system using stem-cell-based regenerative medicine still faces considerable hurdles that need to be overcome. Chief among which is the lack of efficient strategies to generate functional neurons from stem cells. The sustained delivery of biochemical cues and synergistic topographical signaling from electrospun nanofibrous scaffolds may be a potential strategy to enhance neuronal differentiation of stem cells for therapeutic purposes. In this study, retinoic acid (RA) and brain-derived neurotrophic factor (BDNF) were encapsulated into a copolymer of ε-caprolactone and ethyl ethylene phosphate to form a multifunctional, electrospun nanofibrous scaffold. Sustained release of RA and BDNF was achieved for at least 7 and 14 days, respectively. Despite lower cumulative release of drugs as compared to bolus delivery to plain nanofibers (at least 2× and 50× lower for RA and BDNF, respectively), nanofiber-mediated delivery of RA and/or BDNF resulted in similar capacity for neuronal differentiation of mouse neural progenitor cells (NPCs). In addition, nanofiber topography significantly increased neuronal differentiation (with BDNF, 47.4 % Map2+ cells on 2D vs. 53.4 to 56.5 % on nanofibers, p < 0.05) and reduced glial cell differentiation. BDNF was a more potent inducer of neuronal differentiation than RA. RA supplementation alone resulted in minimal effect on NPC differentiation, and dual supplementation of RA and BDNF did not further enhance the neuronal differentiation of NPCs. Collectively, the results suggest that synergistic effects of nanofiber topography and sustained delivery of RA and/or BDNF may contribute towards the design of a multifunctional artificial stem cell niche for NPC neuronal differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hatten ME. Riding the glial monorail: a common mechanism for glial guided neuronal migration in different regions of the developing mammalian brain. Trends Neurosci. 1990;13(5):179–84.

    Article  CAS  PubMed  Google Scholar 

  2. Nadarajah B, Alifragis P, Wong ROL, Parnavelas JG. Ventricle-directed migration in the developing cerebral cortex. Nat Neurosci. 2002;5(3):218–24.

    Article  CAS  PubMed  Google Scholar 

  3. Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol. 1972;145(1):61–83.

    Article  CAS  PubMed  Google Scholar 

  4. Ono K, Kawamura K. Migration of immature neurons along tangentially oriented fibers in the subpial part of the fetal mouse medulla oblongata. Exp Brain Res. 1989;78(2):290–300.

    Article  CAS  PubMed  Google Scholar 

  5. Liu C, Zhao X. MicroRNAs in adult and embryonic neurogenesis. Neuromol Med. 2009;11(3):141–52. 2009/09/01.

    Article  CAS  Google Scholar 

  6. Inestrosa NC, Arenas E. Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci. 2010;11(2):77–86.

    Article  CAS  PubMed  Google Scholar 

  7. G-l M, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci. 2005;28(1):223–50.

    Article  Google Scholar 

  8. Chew SY, Low WC. Scaffold-based approach to direct stem cell neural and cardiovascular differentiation: an analysis of physical and biochemical effects. J Biomed Mater Res A. 2011;97A(3):355–74.

    Article  CAS  Google Scholar 

  9. Chew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials. 2008;29(6):653–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lim SH, Mao H-Q. Electrospun scaffolds for stem cell engineering. Adv Drug Deliv Rev. 2009;61(12):1084–96.

    Article  CAS  PubMed  Google Scholar 

  11. Christopherson GT, Song H, Mao H-Q. The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials. 2009;30(4):556–64.

    Article  CAS  PubMed  Google Scholar 

  12. Carlberg B, Axell MZ, Nannmark U, Liu J, Kuhn HG. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells. Biomed Mater. 2009. doi:10.1088/1748-6041/4/4/045004.

  13. Lim SH, Liu XY, Song H, Yarema KJ, Mao H-Q. The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells. Biomaterials. 2010;31(34):9031–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE, et al. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials. 2009;30(3):354–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu T, Xu J, Chan BP, Chew SY. Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair. J Biomed Mater Res A. 2012;100A(1):236–42.

    Article  CAS  Google Scholar 

  16. Cho YI, Choi JS, Jeong SY, Yoo HS. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomater. 2010;6(12):4725–33.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang X, Cao HQ, Shi LY, Ng SY, Stanton LW, Chew SY. Nanofiber topography and sustained biochemical signaling enhance human mesenchymal stem cell neural commitment. Acta Biomater. 2012;8(3):1290–302.

    Article  CAS  PubMed  Google Scholar 

  18. Horne MK, Nisbet DR, Forsythe JS, Parish CL. Three-dimensional nanofibrous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells. Stem Cells Dev. 2010;19(6):843–52.

    Article  CAS  PubMed  Google Scholar 

  19. Valmikinathan CM, Defroda S, Yu X. Polycaprolactone and bovine serum albumin based nanofibers for controlled release of nerve growth factor. Biomacromolecules. 2009;10(5):1084–9. 2009/05/11.

    Article  CAS  PubMed  Google Scholar 

  20. Chew SY, Mi R, Hoke A, Leong KW. Aligned protein–polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform. Adv Funct Mater. 2007;17(8):1288–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wittmer CR, Claudepierre T, Reber M, Wiedemann P, Garlick JA, Kaplan D, et al. Multifunctionalized electrospun silk fibers promote axon regeneration in the central nervous system. Adv Funct Mater. 2011;21(22):4232–42.

    Article  CAS  Google Scholar 

  22. Dong B, Smith ME, Wnek GE. Encapsulation of multiple biological compounds within a single electrospun fiber. Small. 2009;5(13):1508–12.

    Article  CAS  PubMed  Google Scholar 

  23. Su Y, Su Q, Liu W, Jin G, Mo X, Ramakrishn S. Dual–drug encapsulation and release from core shell nanofibers. J Biomat Sci-Polym E. 2012;23(7):861–71. 2013/01/18.

    Article  CAS  Google Scholar 

  24. Nojehdehian H, Moztarzadeh F, Baharvand H, Nazarian H, Tahriri M. Preparation and surface characterization of poly-L-lysine-coated PLGA microsphere scaffolds containing retinoic acid for nerve tissue engineering: in vitro study. Colloid Surf B-Biointerfaces. 2009;73(1):23–9.

    Article  CAS  Google Scholar 

  25. Guan K, Chang H, Rolletschek A, Wobus A. Embryonic stem cell-derived neurogenesis: retinoic acid induction and lineage selection of neuronal cells. Cell Tissue Res. 2001;305(2):171–6. 2001/08/01.

    Article  CAS  PubMed  Google Scholar 

  26. Xu J, Wang H, Liang T, Cai X, Rao X, Huang Z, et al. Retinoic acid promotes neural conversion of mouse embryonic stem cells in adherent monoculture. Mol Biol Rep. 2012;39(2):789–95. 2012/02/01.

    Article  CAS  PubMed  Google Scholar 

  27. Christie VB, Maltman DJ, Henderson AP, Whiting A, Marder TB, Lako M, et al. Retinoid supplementation of differentiating human neural progenitors and embryonic stem cells leads to enhanced neurogenesis in vitro. J Neurosci Meth. 2010;193(2):239–45.

    Article  CAS  Google Scholar 

  28. Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci. 2007;8(10):755–65.

    Article  CAS  PubMed  Google Scholar 

  29. Maden M. Retinoid signalling in the development of the central nervous system. Nat Rev Neurosci. 2002;3(11):843–53.

    Article  CAS  PubMed  Google Scholar 

  30. Krezel W, Ghyselinck N, Samad TA, Dupé V, Kastner P, Borrelli E, et al. Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science. 1998;279(5352):863–67. February 6, 1998.

    Article  CAS  PubMed  Google Scholar 

  31. Goodman AB. Three independent lines of evidence suggest retinoids as causal to schizophrenia. Proc Natl Acad Sci. 1998;95(13):7240–44. June 23, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Corcoran J, So PL, Maden M. Absence of retinoids can induce motoneuron disease in the adult rat and a retinoid defect is present in motoneuron disease patients. J Cell Sci. 2002;115(24):4735–41. December 15, 2002.

    Article  CAS  PubMed  Google Scholar 

  33. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24(1):677–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Waterhouse EG, Xu B. New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Mol Cell Neurosci. 2009;42(2):81–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol. 2010;70(5):271–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ahmed S, Reynolds BA, Weiss S. BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J Neurosci. 1995;15(8):5765–78.

    CAS  PubMed  Google Scholar 

  37. Vutskits L, Djebbara-Hannas Z, Zhang H, Paccaud JP, Durbec P, Rougon G, et al. PSA-NCAM modulates BDNF-dependent survival and differentiation of cortical neurons. Eur J Neurosci. 2001;13(7):1391–402.

    Article  CAS  PubMed  Google Scholar 

  38. Kirschenbaum B, Goldman SA. Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc Natl Acad Sci. 1995;92(1):210–14. January 3, 1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci. 2001;21(17):6706–17.

    CAS  PubMed  Google Scholar 

  40. Zigova T, Pencea V, Wiegand SJ, Luskin MB. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci. 1998;11(4):234–45.

    Article  CAS  PubMed  Google Scholar 

  41. Wen J, Kim GJA, Leong KW. Poly(D, L lactide–co-ethyl ethylene phosphate)s as new drug carriers. J Control Release. 2003;92(1–2):39–48.

    Article  CAS  PubMed  Google Scholar 

  42. Chua K-N, Lim W-S, Zhang P, Lu H, Wen J, Ramakrishna S, et al. Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials. 2005;26(15):2537–47.

    Article  CAS  PubMed  Google Scholar 

  43. Chew SY, Wen J, Yim EKF, Leong KW. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules. 2005;6(4):2017–24. 2005/07/01.

    Article  CAS  PubMed  Google Scholar 

  44. P-o R, Wang Y-C, Wang J, Chew SY. Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials. 2011;32(25):5915–23.

    Article  Google Scholar 

  45. Xiao C-S, Wang Y-C, Du J-Z, Chen X-S, Wang J. Kinetics and mechanism of 2-ethoxy-2-oxo-1,3,2-dioxaphospholane polymerization initiated by stannous octoate. Macromolecules. 2006;39(20):6825–31. 2012/11/21.

    Article  CAS  Google Scholar 

  46. Wang Y-C, Li Y, Yang X-Z, Yuan Y-Y, Yan L-F, Wang J. Tunable thermosensitivity of biodegradable polymer micelles of poly(Îμ-caprolactone) and polyphosphoester block copolymers. Macromolecules. 2009;42(8):3026–32. 2012/11/21.

    Article  CAS  Google Scholar 

  47. Gelain F, Bottai D, Vescovi A, Zhang S. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One. 2006. doi:10.1371/journal.pone.0000119.

  48. Kaplan DR, Matsumoto K, Lucarelli E, Thiele CJ. Induction of TrkB by retinoic acid mediates biologic responsiveness to BDNF and differentiation of human neuroblastoma cells. Neuron. 1993;11(2):321–31.

    Article  CAS  PubMed  Google Scholar 

  49. Silva A, Pereira J, Oliveira CR, Relvas JB, Rego AC. BDNF and extracellular matrix regulate differentiation of mice neurosphere-derived cells into a GABAergic neuronal phenotype. J Neurosci Res. 2009;87(9):1986–96.

    Article  CAS  PubMed  Google Scholar 

  50. Peltier J, Ormerod B, Schaffer D. Isolation of adult hippocampal neural progenitors. In: Conboy IM, Schaffer DV, Barcellos-Hoff MH, Li S, editors. Protocols for Adult Stem Cells: Humana Press, New York, 2010. p. 57–63.

  51. Bull ND, Bartlett PF. The adult mouse hippocampal progenitor is neurogenic but not a stem cell. J Neurosci. 2005;25(47):10815–21. November 23, 2005.

    Article  CAS  PubMed  Google Scholar 

  52. Low WC, Yau WWY, Stanton LW, Marcy G, Goh E, Chew SY. Directing neuronal differentiation of primary neural progenitor cells by gene knockdown approach. DNA and Cell Biology. 2012;31(7):1148–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, et al. Substrate modulus directs neural stem cell behavior. Biophys J. 2008;95(9):4426–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Levenberg S, Burdick JA, Kraehenbuehl T, Langer R. Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds. Tissue Eng. 2005;11(3–4):506–12.

    Article  CAS  PubMed  Google Scholar 

  55. Bashur CA, Shaffer RD, Dahlgren LA, Guelcher SA, Goldstein AS. Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells. Tissue Eng. 2009;15(9):2435–45.

    Article  CAS  Google Scholar 

  56. Okuda T, Tominaga K, Kidoaki S. Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes. J Control Release. 2010;143(2):258–64.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang H, Jia X, Han F, Zhao J, Zhao Y, Fan Y, et al. Dual-delivery of VEGF and PDGF by double-layered electrospun membranes for blood vessel regeneration. Biomaterials. 2013;34(9):2202–12.

    Article  CAS  PubMed  Google Scholar 

  58. Alhusein N, Blagbrough I, Bank P. Electrospun matrices for localised controlled drug delivery: release of tetracycline hydrochloride from layers of polycaprolactone and poly(ethylene-co-vinyl acetate). Drug Deliv Transl Res. 2012;2(6):477–88.

    Article  CAS  PubMed  Google Scholar 

  59. Riaz SS, Theofilopoulos S, Jauniaux E, Stern GM, Bradford HF. The differentiation potential of human foetal neuronal progenitor cells in vitro. Dev Brain Res. 2004;153(1):39–51.

    Article  CAS  Google Scholar 

  60. Takahashi J, Palmer TD, Gage FH. Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J Neurobiol. 1999;38(1):65–81.

    Article  CAS  PubMed  Google Scholar 

  61. Faigle R, Liu L, Cundiff P, Funa K, Xia Z. Opposing effects of retinoid signaling on astrogliogenesis in embryonic day 13 and 17 cortical progenitor cells. J Neurochem. 2008;106(4):1681–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hádinger N, Varga BV, Berzsenyi S, Környei Z, Madarász E, Herberth B. Astroglia genesis in vitro: distinct effects of retinoic acid in different phases of neural stem cell differentiaion. Int J Dev Neurosci. 2009;27(4):365–75.

    Article  PubMed  Google Scholar 

  63. Herrera F, Chen Q, Schubert D. Synergistic effect of retinoic acid and cytokines on the regulation of glial fibrillary acidic protein expression. J Biol Chem. 2010;285(50):38915–22. December 10, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Asano H, Aonuma M, Sanosaka T, Kohyama J, Namihira M, Nakashima K. Astrocyte differentiation of neural precursor cells is enhanced by retinoic acid through a change in epigenetic modification. Stem Cells. 2009;27(11):2744–52.

    Article  CAS  PubMed  Google Scholar 

  65. Xiao J, Wong AW, Willingham MM, van den Buuse M, Kilpatrick TJ, Murray SS. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes. Neurosignals. 2010;18(3):186–202.

    Article  CAS  PubMed  Google Scholar 

  66. Noll E, Miller RH. Regulation of oligodendrocyte differentiation: a role for retinoic acid in the spinal cord. Development. 1994;120(3):649–60.

    CAS  PubMed  Google Scholar 

  67. Marklein RA, Burdick JA. Controlling stem cell fate with material design. Adv Mater. 2010;22(2):175–89.

    Article  CAS  PubMed  Google Scholar 

  68. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 2009;5(1):17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jewell CM, Lynn DM. Surface-mediated delivery of DNA: cationic polymers take charge. Curr Opin Colloid Interface Sci. 2008;13(6):395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shen H, Tan J, Saltzman WM. Surface-mediated gene transfer from nanocomposites of controlled texture. Nat Mater. 2004;3(8):569–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Partial funding support by the MechanoBiology Institute, Singapore (R-714-013-007-271) and A*Star BMRC SSCC (09/016) are acknowledged. The authors thank Dr. Eyleen Goh and Dr. Guillaume Marcy for their expertise in mouse NPCs isolation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sing Yian Chew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Low, W.C., Rujitanaroj, PO., Wang, F. et al. Nanofiber-mediated release of retinoic acid and brain-derived neurotrophic factor for enhanced neuronal differentiation of neural progenitor cells. Drug Deliv. and Transl. Res. 5, 89–100 (2015). https://doi.org/10.1007/s13346-013-0131-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-013-0131-5

Keywords

Navigation