Skip to main content

Advertisement

Log in

Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Electrospun nanofibrous mats have recently been employed as drug reservoirs for their unique features, such as high surface-to-volume ratios and easy fabrication process. We describe herein various methods of fabricating drug- and gene-encapsulated nanofibrous meshes, which can be prepared by electrospinning. The electrospinning process of nanofibrous mats is affected by many parameters, including viscosity and ejection speeds of the polymeric solutions and the electrical potential applied to the system. Both single- and dual-nozzle systems are widely employed in the preparation of electrospun nanofibers encapsulating drugs and genes, which are usually incorporated into the electrospun mats either by physical mixing with polymeric solutions before electrospinning or by physical incorporation after electrospinning. Various strategies have been tailored to maintain the bioactivity of proteins for tissue regeneration before and after electrospinning. Nucleic acids, such as DNA and siRNA, are also incorporated into nanofibrous meshes to enhance tissue regeneration by expressing transgenes or silencing domestic genes in specific tissues. Drug- or gene-incorporated nanofibrous meshes can greatly increase tissue regeneration rates and reduce scar formation in normal and diabetic wounds. Hybrid nanofibers, with multiple cell layers or hydrogels, have also been used to improve wound healing efficiency by increasing cell infiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, et al. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials. 2006;27:1452–61.

    Article  CAS  PubMed  Google Scholar 

  2. Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 2007;3:321–30.

    Article  CAS  PubMed  Google Scholar 

  3. Choi JS, Leong KW, Yoo HS. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials. 2008;29:587–96.

    Article  CAS  PubMed  Google Scholar 

  4. Schneider A, Wang XY, Kaplan DL, Garlick JA, Egles C. Biofunctionalized eletrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater. 2009;5:2570–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Venugopal J, Ramakrishna S. Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration. Tissue Eng. 2005;11:847–54.

    Article  CAS  PubMed  Google Scholar 

  6. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev. 2007;59:1413–33.

    Article  CAS  PubMed  Google Scholar 

  7. Ma Z, Kotaki M, Inai R, Ramakrishna S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 2005;11:101–9.

    Article  PubMed  Google Scholar 

  8. Park SH, Kim TG, Kim HC, Yang DY, Park TG. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomater. 2008;4:1198–207.

    Article  CAS  PubMed  Google Scholar 

  9. Kumbar SG, James R, Nukavarapu SP, Laurencin CT. Elctrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater. 2008;3:34002–17.

    Article  CAS  Google Scholar 

  10. Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A. 2003;67:531–7.

    Article  PubMed  Google Scholar 

  11. Grafahrend D, Calvet JL, Klinkhammer K, Salber J, Dalton PD, Möller M, et al. Control of protein adsorption on functionalized electrospun fibers. Biotechnol Bioeng. 2008;101:609–21.

    Article  CAS  PubMed  Google Scholar 

  12. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrost. 1995;35:151–60.

    Article  CAS  Google Scholar 

  13. Zhao Y, Cao X, Jiang L. Bio-mimic multichannel microtubes by a facile method. J Am Chem Soc. 2007;129:764–5.

    Article  CAS  PubMed  Google Scholar 

  14. He CL, Huang ZM, Han XJ. Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications. J Biomed Mater Res A. 2009;89:80–95.

    Article  PubMed  Google Scholar 

  15. Katti DS, Robinson KW, Ko FK, Laurencin CT. Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res B Appl Biomater. 2004;70:286–96.

    Article  PubMed  Google Scholar 

  16. Tan SH, Inai R, Kotaki M, Ramakrishna S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer. 2005;46:6128–34.

    Article  CAS  Google Scholar 

  17. Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials. 2005;26:6176–84.

    Article  CAS  PubMed  Google Scholar 

  18. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 2001;42:261–72.

    Article  CAS  Google Scholar 

  19. Veleirinho B, Rei MF, Lopez-DA-Silva JA. Solvent and concentration effects on the properties of electrospun poly(ethylene terephthalate) nanofiber mats. J Polym Sci, Part B: Polym Phys. 2008;46:460–71.

    Article  CAS  Google Scholar 

  20. Choi JS, Yoo HS. Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties. J Biomed Mater Res A. 2010;95:564–73.

    Article  PubMed  Google Scholar 

  21. Yoo HS, Oh JE, Lee KH, Park TG. Biodegradable nanoparticles containing doxorubicin-PLGA conjugate for sustained release. Pharm Res. 1999;16:1114–8.

    Article  CAS  PubMed  Google Scholar 

  22. Lee JI, Yoo HS. Biodegradable microspheres containing poly(ε-caprolactone)-pluronic block copolymers for temperature-responsive release of proteins. Colloids Surf B Biointerfaces. 2008;61:81–7.

    Article  CAS  PubMed  Google Scholar 

  23. Shenoy SL, Bates WD, Frisch HL, Wnek GE. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer. 2005;46:3372–84.

    Article  CAS  Google Scholar 

  24. Maretschek S, Greiner A, Kissel T. Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. J Control Release. 2008;127:180–7.

    Article  CAS  PubMed  Google Scholar 

  25. Chew SY, Wen J, Yim EKF, Leong KW. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules. 2005;6:2017–24.

    Article  CAS  PubMed  Google Scholar 

  26. Chew SY, Hufnagel TC, Lim CT, Leong KW. Mechanical properties of single electrospun drug-encapsulated nanofibers. Nanotechnology. 2006;17:3880–91.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zeng J, Aigner A, Czubayko F, Kissel T, Wendorff JH, Greiner A. Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules. 2005;6:1484–8.

    Article  CAS  PubMed  Google Scholar 

  28. Chen JP, Chang GY, Chen JK. Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A Physicochem Eng Asp. 2008;313–314:183–8.

    Article  Google Scholar 

  29. Kim KH, Jeong L, Park HN, Shin SY, Park WH, Lee SC, et al. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol. 2005;120:327–39.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou Y, Yang D, Chen X, Xu Q, Lu F, Nie J. Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules. 2008;9:349–54.

    Article  CAS  PubMed  Google Scholar 

  31. Yang Y, Li X, Cui W, Zhou S, Tan R, Wang C. Structural stability and release profiles of proteins from core–shell poly (dl-lactide) ultrafine fibers prepared by emulsion electropsinning. J Biomed Mater Res A. 2008;86:374–85.

    Article  PubMed  Google Scholar 

  32. Zhang Y, Huang ZM, Xu X, Lim CT, Ramakrishna S. Preparation of core–shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning. Chem Mater. 2004;16:3406–9.

    Article  CAS  Google Scholar 

  33. Jiang H, Hu Y, Zhao P, Li Y, Zhu K. Modulation of protein release from biodegradable core–shell structured fibers prepared by coaxial electrospinning. J Biomed Mater Res B Appl Biomater. 2006;79:50–7.

    Article  PubMed  Google Scholar 

  34. Zhang YZ, Wang X, Feng Y, Li J, Lim CT, Ramakrishna S. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release. Biomacromolecules. 2006;7:1049–57.

    Article  CAS  PubMed  Google Scholar 

  35. Liao IC, Chew SY, Leong KW. Aligned core–shell nanofibers delivering bioactive proteins. Nanomedicine. 2006;1:465–71.

    Article  CAS  PubMed  Google Scholar 

  36. Huang ZM, He CL, Yang A, Zhang Y, Han XJ, Yin J, et al. Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J Biomed Mater Res A. 2006;77:169–79.

    Article  PubMed  Google Scholar 

  37. Yoshida M, Langer R, Lendlein A, Lahann J. From advanced biomedical coatings to multi-functionalized biomaterials. Polym Rev. 2006;46:347–75.

    CAS  Google Scholar 

  38. Rajangam K, Behanna HA, Hui MJ, Han X, Hulvat JF, Lomasney JW, et al. Heparin binding nanostructures to promote growth of blood vessels. Nano Lett. 2006;6:2086–90.

    Article  CAS  PubMed  Google Scholar 

  39. Casper CL, Yamaguchi N, Kiick KL, Rabolt JF. Functionalizing electrospun fibers with biologically relevant macromolecules. Biomacromolecules. 2005;6:1998–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cho YI, Choi JS, Jeong SY, Yoo HS. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomater. 2010;6:4725–33.

    Article  CAS  PubMed  Google Scholar 

  41. Choi JS, Choi SH, Yoo HS. Coaxial electrospun nanofibers for treatment of diabetic ulcers with binary release of multiple growth factors. J Mater Chem. 2011;21:5258–67.

    Article  CAS  Google Scholar 

  42. Byrnes CK, Khan FH, Nass PH, Hatoum C, Ducan MD, Harmon JW. Success and limitations of a naked plasmid transfection protocol for keratinocyte growth factor-1 to enhance cutaneous wound healing. Wound Repair Regen. 2001;9:341–6.

    Article  CAS  PubMed  Google Scholar 

  43. Andree C, Swain WF, Page CP, Macklin MD, Slama J, Hatzis D, et al. In vivo transfer and expression of a human epidermal growth factor gene accelerates wound repair. Proc Natl Acad Sci U S A. 1994;91:12188–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Davison JM, Krieg T, Eming SA. Particle-mediated gene therapy of wounds. Wound Repair Regen. 2000;8:452–9.

    Article  Google Scholar 

  45. Williams RS, Johnston SA, Riedy M, Devit MJ, McElligott SG, Sanford JC. Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles. Proc Natl Acad Sci U S A. 1991;88:2726–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pakhomova ON, Gregory BW, Khorokhorina VA, Bowman AM, Xiao S, Pakhomov AG. Electroporation-induced electrosensitization. PLoS One. 2011;6:e17100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee RC, Kolodney MS. Electrical injury mechanisms: electrical breakdown of cell membranes. Plast Reconstr Surg. 1987;80:672–9.

    Article  CAS  PubMed  Google Scholar 

  48. Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand. 2003;177:437–47.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang J, Duan Y, Wei D, Wang L, Wang H, Gu Z, et al. Co-electrospun fibrous scaffold–adsorbed DNA for substrate-mediated gene delivery. J Biomed Mater Res A. 2011;96:212–20.

    Article  PubMed  Google Scholar 

  50. Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M. D evelopment of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release. 2003;89:341–53.

    Article  CAS  PubMed  Google Scholar 

  51. Rujitanaroj P, Wang Y, Wang J, Chew SY. Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials. 2011;32:5915–23.

    Article  CAS  PubMed  Google Scholar 

  52. Ji W, Sun Y, Yang F, Beucken J, Fan M, Chen Z, et al. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm Res. 2011;28:1259–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dehai L, Luu YK, Kim K, Hsiao BS, Hadjiargyrou M, Chu B. In vitro non-viral gene delivery with nanofibrous scaffolds. Nucleic Acids Res. 2005;33:e170.

    Article  Google Scholar 

  54. Jang J, Shea LD. Controllable delivery of non-viral DNA from porous scaffolds. J Control Release. 2003;86:157–68.

    Article  CAS  PubMed  Google Scholar 

  55. Maruyama A, Katoh M, Ishihara T, Akaike T. Comb-type polycations effectively stabilize DNA triplex. Bioconjug Chem. 1997;8:3–6.

    Article  CAS  PubMed  Google Scholar 

  56. Hong K, Zheng W, Baker A, Papahadjopoulos D. Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly(ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery. FEBS Lett. 1997;400:233–7.

    Article  CAS  PubMed  Google Scholar 

  57. Werth S, Urban-Klein B, Dai L, Hobel S, Grzelinski M, Bakowsky U, et al. A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. J Control Release. 2006;122:257–70.

    Article  Google Scholar 

  58. Urban-Kelin B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 2005;12:461–6.

    Article  Google Scholar 

  59. Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) and its role in gene delivery. J Control Release. 1999;60:149–60.

    Article  CAS  PubMed  Google Scholar 

  60. Kunath K, Harpe A, Fischer D, Petersen H, Bickel U, Voigt K, et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release. 2003;89:113–25.

    Article  CAS  PubMed  Google Scholar 

  61. Lungwitz U, Breunig M, Blunk T, Gopferich A. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm. 2005;60:247–66.

    Article  CAS  PubMed  Google Scholar 

  62. Yang Y, Li X, Cheng L, He S, Zou J, Chen F, et al. Core–sheath structured fibers with pDNA polyplex loadings for the optimal release profile and transfection efficiency as potential tissue engineering scaffolds. Acta Biomater. 2011;7:2533–43.

    Article  CAS  PubMed  Google Scholar 

  63. El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release. 2004;94:1–14.

    Article  CAS  PubMed  Google Scholar 

  64. Saraf A, Baggett LS, Raphael RM, Kasper FK, Mikos AG. Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. J Control Release. 2010;143:95–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sill TJ, Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006.

    Article  CAS  PubMed  Google Scholar 

  66. Kim HS, Yoo HS. MMPs-responsive release of DNA from electrospun nanofibrous matrix for local gene therapy: in vitro and in vivo evaluation. J Control Release. 2010;145:264–71.

    Article  CAS  PubMed  Google Scholar 

  67. Kim HS, Yoo HS. Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes. Gene Ther. 2012. doi:10.1038/gt.2012.49.

    Google Scholar 

  68. Sakai S, Yamada Y, Yamaguchi T, Ciach T, Kawakami K. Surface immobilization of poly(ethyleneimine) and plasmid DNA on electrospun poly(l-lactic acid) fibrous mats using a layer-by-layer approach for gene delivery. J Biomed Mater Res A. 2009;88:281–7.

    Article  PubMed  Google Scholar 

  69. Godbey WT, Wu KK, Mikos A. Poly(ethylenimine)-mediated gene delivery affects endothelial cell function and viability. Biomaterials. 2011;22:471–80.

    Article  Google Scholar 

  70. Fischer D, Bieber T, Li Y, Elsasser HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res. 1999;16:1273–9.

    Article  CAS  PubMed  Google Scholar 

  71. Godbey WT, Wu KK, Hirasaki GJ, Mikos AG. Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency. Gene Ther. 1999;6:1380–8.

    Article  CAS  PubMed  Google Scholar 

  72. Shin HJ, Lee CH, Cho IH, Kim Y, Lee Y, Kim IA, et al. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polym Ed. 2006;17:103–19.

    Article  CAS  PubMed  Google Scholar 

  73. Zhong SP, Zhang YZ, Lim CT. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2:510–25.

    Article  CAS  PubMed  Google Scholar 

  74. Nam J, Huang Y, Agarwal S, Lannutti J. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 2007;13:2249–57.

    Article  CAS  PubMed  Google Scholar 

  75. Vaguette C, Copper-White JJ. Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. Acta Biomater. 2011;7:2544–57.

    Article  Google Scholar 

  76. Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW. Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules. 2008;9:2097–103.

    Article  CAS  PubMed  Google Scholar 

  77. Yang XC, Shah JD, Wang HJ. Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formation. Tissue Eng Part A. 2009;15:945–56.

    Article  CAS  PubMed  Google Scholar 

  78. Kai D, Prabhakaran M, Stahl B, Eblenkamp M, Wintermantel E, Ramakrishna S. Mechanical properties and in vitro behavior of nanofiber–hydrogel composites for tissue engineering applications. Nanotechnology. 2010;23:095705–14.

    Article  Google Scholar 

  79. Ionescu LC, Lee GC, Sennett BJ, Burdick JA, Mauck RL. An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials. 2010;31:4113–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barakat NAM, Abadir MF, Sheikh FA, Kanjwal MA, Park SJ, Kim HY. Polymeric nanofibers containing solid nanoparticles prepared by electrospinning and their applications. Chem Eng J. 2010;156:487–95.

    Article  CAS  Google Scholar 

  81. Wei G, Jin Q, Giannobile WV, Ma PX. Nano-fibrous scaffold for controlled delivery of recombinant human PDGF-BB. J Control Release. 2006;112:103–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wei G, Jin Q, Giannobile WV, Ma PX. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials. 2007;28:2087–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Min X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials. 2007;28:316–25.

    Article  Google Scholar 

  84. Meng ZX, Zeng QT, Sun ZZ, Xu XX, Wang YS, Zheng W, et al. Immobilizing natural macromolecule on PLGA electrospun nanofiber with surface entrapment and entrapment-graft techniques. Colloids Surf B Biointerfaces. 2012;94:44–50.

    Article  CAS  PubMed  Google Scholar 

  85. Meng ZX, Li HF, Sun ZZ, Zheng W, Zheng YF. Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering. Mater Sci Eng C. 2013;33:699–706.

    Article  CAS  Google Scholar 

  86. Borjigin M, Stouse B, Niamat RA, Bialk P, Eskridge C, Xie J, et al. Proliferation of genetically modified human cells on electrospun nanofiber scaffolds. Mol Ther-Nucleic Acids. 2012;1:e59–67.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Liu X, Lin TL, Yao G, Zhao H, Dodson M, Wang X. In vivo wound healing and antibacterial performances of electrospun nanofiber membranes. J Biomed Mater Res A. 2010;94:499–508.

    PubMed  Google Scholar 

  88. Alves da Silva ML, Martins A, Costa-Pinto AR, Costa P, Faria S, Gomes M, et al. Cartilage tissue engineering using electrospun PCL nanofiber meshes and MSCs. Biomacromolecules. 2010;11:3228–36.

    Article  CAS  PubMed  Google Scholar 

  89. Choi WS, Bae JW, Lim HR, Joung YK, Park JC, Kwon IK, et al. RGD peptide-immobilized electrospun matrix of polyurethane for enhanced endothelial cell affinity. Biomed Mater. 2008;3:44104–12.

    Article  Google Scholar 

  90. Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials. 2005;26:1261–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the National Research Foundation (NRF) grant funded by the Korea government (MEST) (grant #: 2012005857R1A2A2A01) and Kangwon National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyuk Sang Yoo.

Additional information

Ji Suk Choi and Hye Sung Kim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J.S., Kim, H.S. & Yoo, H.S. Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv. and Transl. Res. 5, 137–145 (2015). https://doi.org/10.1007/s13346-013-0148-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-013-0148-9

Keywords

Navigation