Skip to main content
Log in

Visible light and near-infrared-responsive chromophores for drug delivery-on-demand applications

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The need for temporal-spatial control over the release of biologically active molecules has motivated efforts to engineer novel drug delivery-on-demand strategies actuated via light irradiation. Many systems, however, have been limited to in vitro proof-of-concept due to biocompatibility issues with the photo-responsive moieties or the light wavelength, intensity, and duration. To overcome these limitations, this paper describes a light actuated drug delivery-on-demand strategy that uses visible and near-infrared (NIR) light and biocompatible chromophores: cardiogreen, methylene blue, and riboflavin. All three chromophores are capable of significant photothermal reaction upon exposure to NIR and visible light, and the amount of temperature change is dependent upon light intensity, wavelength as well as chromophore concentration. Pulsatile release of bovine serum albumin (BSA) from thermally responsive hydrogels was achieved over 4 days. These findings have the potential to translate light-actuated drug delivery-on-demand systems from the bench to clinical applications that require explicit control over the presentation of biologically active molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alvarez-Lorenzo C, Bromberg L, Concheiro A. Light-sensitive intelligent drug delivery systems. Photochem Photobiol. 2009;85(4):848–60.

    Article  CAS  PubMed  Google Scholar 

  2. LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 2003;21(10):1184–91.

    Article  CAS  PubMed  Google Scholar 

  3. Kost J, Langer R. Responsive polymeric delivery systems. Adv Drug Deliv Rev. 2001;46(1–3):125–48.

    Article  CAS  PubMed  Google Scholar 

  4. Sershen S, West J. Implantable, polymeric systems for modulated drug delivery. Adv Drug Deliv Rev. 2002;54(9):1225–35.

    Article  CAS  PubMed  Google Scholar 

  5. Tomatsu I, Peng K, Kros A. Photoresponsive hydrogels for biomedical applications. Adv Drug Deliv Rev. 2011;63(14–15):1257–66.

    Article  CAS  PubMed  Google Scholar 

  6. Tadokoro T, Kobayashi N, Zmudzka BZ, Ito S, Wakamatsu K, Yamaguchi Y, et al. UV-induced DNA damage and melanin content in human skin differing in racial/ethnic origin. FASEB J. 2003;17(6):1177–9.

    CAS  PubMed  Google Scholar 

  7. Lavker RM, Gerberick GF, Veres D, Irwin CJ, Kaidbey KH. Cumulative effects from repeated exposures to suberythemal doses of UVB and UVA in human skin. J Am Acad Dermatol. 1995;32(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  8. Joseph JM, Destaillats H, Hung HM, Hoffmann MR. The sonochemical degradation of azobenzene and related azo dyes: rate enhancements via Fenton's reactions. J Phys Chem A. 2000;104(2):301–7.

    Article  CAS  Google Scholar 

  9. Anderson RR, Parrish JA. The optics of human-skin. J Investig Dermatol. 1981;77(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  10. Philip R, Penzkofer A, Baumler W, Szeimies RM, Abels C. Absorption and fluorescence spectroscopic investigation of indocyanine green. J Photochem Photobiol A Chem. 1996;96(1–3):137–48.

    Article  CAS  Google Scholar 

  11. Mohr H, Bachmann B, KleinStruckmeier A, Lambrecht B. Virus inactivation of blood products by phenothiazine dyes and light. Photochem Photobiol. 1997;65(3):441–5.

    Article  CAS  PubMed  Google Scholar 

  12. Williamson LM, Cardigan R, Prowse CV. Methylene blue-treated fresh-frozen plasma: what is its contribution to blood safety? Transfusion. 2003;43(9):1322–9.

    Article  CAS  PubMed  Google Scholar 

  13. Guyton A, Hall J. Textbook of medical physiology. Philidelphia: Elsevier; 2006.

    Google Scholar 

  14. Oster G, Holmstrom B, Bellin JS. Photochemistry of riboflavin. Experientia. 1962;18(6):249–53.

    Article  CAS  PubMed  Google Scholar 

  15. Vanderputten WJM, Kelly JM. Laser flash spectroscopy of methylene-blue with nucleic-acids - effects of ionic-strength and pH. Photochem Photobiol. 1989;49(2):145–51.

    Article  CAS  Google Scholar 

  16. Zhang XZ, Zhuo RX, Yang YY. Using mixed solvent to synthesize temperature sensitive poly(N-isopropylacrylamide) gel with rapid dynamics properties. Biomaterials. 2002;23(5):1313–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kim S-H, Chu C-C. Visible light induced dextran-methacrylate hydrogel formation using (−)-riboflavin vitamin B2 as a photoinitiator and L-arginine as a co-initiator. Fibers Polym. 2009;10(1):14–20.

    Article  CAS  Google Scholar 

  18. Bertolotti SG, Previtali CM, Rufs AM, Encinas MV. Riboflavin triethanolamine as photoinitiator system of vinyl polymerization. A mechanistic study by laser flash photolysis. Macromolecules. 1999;32(9):2920–4.

    Article  CAS  Google Scholar 

  19. Floyd RA, Schneider JE, Dittmer DR. Methylene blue photoinactivation of RNA viruses. Antivir Res. 2004;61(3):141–51.

    Article  CAS  PubMed  Google Scholar 

  20. Kim TH, Chen YP, Mount CW, Gombotz WR, Li XD, Pun SH. Evaluation of temperature-sensitive, indocyanine green-encapsulating micelles for noninvasive near-infrared tumor imaging. Pharm Res. 2010;27(9):1900–13.

    Article  CAS  PubMed  Google Scholar 

  21. Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol. 2007;18(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  22. Ntziachristos V, Yodh AG, Schnall M, Chance B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci U S A. 2000;97(6):2767–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Patel RH, Wadajkar AS, Patel NL, Kavuri VC, Nguyen KT, Liu HL. Multifunctionality of indocyanine green-loaded biodegradable nanoparticles for enhanced optical imaging and hyperthermia intervention of cancer. J Biomed Opt. 2012;17(4):10.

    Article  Google Scholar 

  24. Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperth. 2003;19(3):267–94.

    Article  CAS  Google Scholar 

  25. Roemer RB. Engineering aspects of hyperthermia therapy. Annu Rev Biomed Eng. 1999;1:347–76.

    Article  CAS  PubMed  Google Scholar 

  26. Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol. 2001;19(4):316–7.

    Article  CAS  PubMed  Google Scholar 

  27. Curcio JA, Petty CC. The near infrared absorption spectrum of liquid water. J Opt Soc Am. 1951;41(5):302.

    Article  CAS  Google Scholar 

  28. Tonnessen BH, Pounds L. Radiation physics. J Vasc Surg. 2011;53:6S–8S.

    Article  PubMed  Google Scholar 

  29. Bergmann K, Okonski CT. A spectroscopic study of methylene blue monomer, dimer, and complexes with montmorillonite. J Phys Chem. 1963;67(10):2169–77.

    Article  CAS  Google Scholar 

  30. Liebel F, Kaur S, Ruvolo E, Kollias N, Southall MD. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J Investig Dermatol. 2012;132(7):1901–7.

    Article  CAS  PubMed  Google Scholar 

  31. Holzer W, Mauerer M, Penzkofer A, Szeimies RM, Abels C, Landthaler M, et al. Photostability and thermal stability of indocyanine green. J Photochem Photobiol B Biol. 1998;47(2–3):155–64.

    Article  CAS  Google Scholar 

  32. Landsman MLJ, Kwant G, Mook GA, Zijlstra WG. Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J Appl Physiol. 1976;40(4):575–83.

    CAS  PubMed  Google Scholar 

  33. Tardivo JP, Del Giglio A, de Oliveira CS, Gabrielli DS, Junqueira HC, Tada DB, et al. Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagn Photodyn Ther. 2005;2(3):175–91.

    Article  CAS  Google Scholar 

  34. Islam SDM, Penzkofer A, Hegemann P. Quantum yield of triplet formation of riboflavin in aqueous solution and of flavin mononucleotide bound to the LOV1 domain of Photl from Chlamydomonas reinhardtii. Chem Phys. 2003;291(1):97–114.

    Article  CAS  Google Scholar 

  35. Ahmad I, Fasihullah Q, Noor A, Ansari IA, Ali QNM. Photolysis of riboflavin in aqueous solution: a kinetic study. Int J Pharm. 2004;280(1–2):199–208.

    Article  CAS  PubMed  Google Scholar 

  36. Ahmad I, Sheraz MA, Ahmed S, Kazi SH, Mirza T, Aminuddin M. Stabilizing effect of citrate buffer on the photolysis of riboflavin in aqueous solution. Results Pharma Sci. 2011;1(1):11–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Chen R, Wang X, Yao XK, Zheng XC, Wang J, Jiang XQ. Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials. 2013;34(33):8314–22.

    Article  CAS  PubMed  Google Scholar 

  38. Hu J, Hou Y, Park H, Choi B, Hou S, Chung A, et al. Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater. 2012;8(5):1730–8.

    Article  CAS  PubMed  Google Scholar 

  39. Grzelak A, Rychlik B, Baptosz G. Light-dependent generation of reactive oxygen species in cell culture media. Free Radic Biol Med. 2001;30(12):1418–25.

    Article  CAS  PubMed  Google Scholar 

  40. Varma SD, Kumar S, Richards RD. Light-induced damage to ocular lens cation pump: prevention by vitamin C. Proc Natl Acad Sci. 1979;76(7):3504–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Hah HJ, Kim G, Lee Y-EK, Orringer DA, Sagher O, Philbert MA, et al. Methylene blue-conjugated hydrogel nanoparticles and tumor-cell targeted photodynamic therapy. Macromol Biosci. 2011;11(1):90–9.

    Article  CAS  PubMed  Google Scholar 

  42. Phelps MA, Foraker AB, Gao W, Dalton JT, Swaan PW. A novel rhodamine − riboflavin conjugate probe exhibits distinct fluorescence resonance energy transfer that enables riboflavin trafficking and subcellular localization studies. Mol Pharm. 2004;1(4):257–66.

    Article  CAS  PubMed  Google Scholar 

  43. Gutowska A, Bark JS, Kwon IC, Bae YH, Cha Y, Kim SW. Squeezing hydrogels for controlled oral drug delivery. J Control Release. 1997;48(2–3):141–8.

    Article  CAS  Google Scholar 

  44. Yoshida R, Sakai K, Okano T, Sakurai Y. Drug release profiles in the shrinking process of thermoresponsive poly(N-isopropylacrylamide-co-alkyl methacrylate) gels. Ind Eng Chem Res. 1992;31(10):2339–45.

    Article  CAS  Google Scholar 

  45. Lee S-M, Park H, Yoo K-H. Synergistic cancer therapeutic effects of locally delivered drug and heat using multifunctional nanoparticles. Adv Mater. 2010;22(36):4049–53.

    Article  CAS  PubMed  Google Scholar 

  46. Xiao Z, Ji C, Shi J, Pridgen EM, Frieder J, Wu J, et al. DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew Chem Int Ed. 2012;51(47):11853–7.

    Article  CAS  Google Scholar 

  47. Shiotani A, Mori T, Niidome T, Niidome Y, Katayama Y. Stable incorporation of gold nanorods into N-isopropylacrylamide hydrogels and their rapid shrinkage induced by near-infrared laser irradiation. Langmuir. 2007;23(7):4012–8.

    Article  CAS  PubMed  Google Scholar 

  48. Dong K, Liu Z, Li Z, Ren J, Qu X. Hydrophobic anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo. Adv Mater. 2013;25(32):4452–8.

    Article  CAS  PubMed  Google Scholar 

  49. Jayakumar MKG, Idris NM, Zhang Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc Natl Acad Sci U S A. 2012;109(22):8483–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Viger ML, Sheng W, Dore K, Alhasan AH, Carling C-J, Lux J, et al. Near-infrared-induced heating of confined water in polymeric particles for efficient payload release. ACS Nano. 2014;8(5):4815–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Carter KA, Shao S, Hoopes MI, Luo D, Ahsan B, Grigoryants VM, et al. Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nat Commun. 2014;5:1–11.

    Article  Google Scholar 

  52. Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanoparticle Res. 2010;12(7):2313–33.

    Article  CAS  Google Scholar 

  53. Cho W-S, Cho M, Jeong J, Choi M, Cho H-Y, Han BS, et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol. 2009;236(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  54. Malonne H, Eeckman F, Fontaine D, Otto A, De Vos L, Moes A, et al. Preparation of poly (N-isopropylacrylamide) copolymers and preliminary assessment of their acute and subacute toxicity in mice. Eur J Pharm Biopharm. 2005;61(3):188–94.

    Article  CAS  PubMed  Google Scholar 

  55. Pan Y, Bao H, Sahoo NG, Wu T, Li L. Water-soluble poly(N-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Adv Funct Mater. 2011;21(14):2754–63.

    Article  CAS  Google Scholar 

  56. Patenaude M, Hoare T. Injectable, degradable thermoresponsive poly(N-isopropylacrylamide) hydrogels. ACS Macro Lett. 2012;1(3):409–13.

    Article  CAS  Google Scholar 

  57. Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials. 2005;26(16):3055–64.

    Article  CAS  PubMed  Google Scholar 

  58. Wadajkar AS, Koppolu B, Rahimi M, Nguyen KT. Cytotoxic evaluation of N-isopropylacrylamide monomers and temperature-sensitive poly(N-isopropylacrylamide) nanoparticles. J Nanoparticle Res. 2009;11(6):1375–82.

    Article  CAS  Google Scholar 

  59. Park SH, Choi BG, Moon HJ, Cho S-H, Jeong B. Block sequence affects thermosensitivity and nano-assembly: PEG-L-PA-DL-PA and PEG-DL-PA-L-PA block copolymers. Soft Matter. 2011;7(14):6515–21.

    Article  CAS  Google Scholar 

  60. Park MH, Joo MK, Choi BG, Jeong B. Biodegradable thermogels. Acc Chem Res. 2012;45(3):424–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

C. Linsley, V. Quach, G. Agrawal, E. Hartnett, and B. Wu declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin M. Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Fig. 1

(PDF 75 kb)

Supplement Fig. 2

(PDF 115 kb)

Supplement Fig. 3

(PDF 122 kb)

Supplement Fig. 4

(PDF 117 kb)

Supplement Table 1

(PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linsley, C.S., Quach, V.Y., Agrawal, G. et al. Visible light and near-infrared-responsive chromophores for drug delivery-on-demand applications. Drug Deliv. and Transl. Res. 5, 611–624 (2015). https://doi.org/10.1007/s13346-015-0260-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-015-0260-0

Keywords

Navigation