Skip to main content

Advertisement

Log in

Recent advances in hemophilia B therapy

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Hemophilia B is a hereditary bleeding disorder caused by the deficiency in coagulation factor IX. Understanding coagulation and the role of factor IX as well as patient population and diagnosis are all critical factors in developing treatment strategies and regimens for hemophilia B patients. Current treatment options rely on protein replacement therapy by intravenous injection, which have markedly improved patient lifespan and quality of life. However, issues with current options include lack of patient compliance due to needle-based administration, high expenses, and potential other complications (e.g., surgical procedures, inhibitor formation). As a result, these treatment options are also limited to developed countries. Recent advantages in hemophilia B treatment have focused on addressing these pain points. Emerging commercial products based on modified factor IX aim to reduce injection frequency. Exploratory research efforts have focused on novel drug delivery systems for orally administered treatment and gene therapy as a potential cure. Such alternative treatment methods are promising options for hemophilia B patients worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Francischetti IMB. Does activation of the blood coagulation cascade have a role in malaria pathogenesis? Trends Parasitol. 2008;24(6):258–63. doi:10.1016/j.pt.2008.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. DeLoughery TG. Hemostasis and thrombosis. Vol book, whole. Cham: Springer; 2015.

    Google Scholar 

  3. Stenflo J. Contributions of Gla and EGF-like domains to the function of vitamin K-dependent coagulation factors. Crit Rev Eukaryot Gene Expr. 1998;9(1):59–88.

    Google Scholar 

  4. Wilcox JN, Smith KM, Schwartz SM, Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci. 1989;86(8):2839–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Banner DW, D’Arcy A, Chene C, Winkler FK, Guha A, Konigsberg WH, et al. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature. 1996;380:41–6.

    Article  CAS  PubMed  Google Scholar 

  6. Mosesson MW, Siebenlist KR, Meh DA. The structure and biological features of fibrinogen and fibrin. Ann N Y Acad Sci. 2001;936(1):11–30.

    Article  CAS  PubMed  Google Scholar 

  7. Bajzar L. Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic pathway. Arterioscler Thromb Vasc Biol. 2000;20(12):2511–8.

    Article  CAS  PubMed  Google Scholar 

  8. Fantony JJ, Inman BA. Thromboembolism and bleeding in bladder cancer. Oncology. 2014;28(10):847–54.

    PubMed  Google Scholar 

  9. Kessler CM, Mariani G. Clinical manifestations and therapy of the hemophilias. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN, editors. Hemostasis and thrombosis: basic principles and clinical practice. 5th ed. Philadelphia: Lippincott-Raven; 2006. p. 887–904.

    Google Scholar 

  10. Hemophilia. NIH NHLBI. http://www.nhlbi.nih.gov/health/health-topics/topics/hemophilia.

  11. About Bleeding Disorders: Hemophilia. World Federation of Hemophilia. http://www.wfh.org/en/page.aspx?pid=646.

  12. Hemophilia B. National Hemophilia Foundation. https://www.hemophilia.org/Bleeding-Disorders/Types-of-Bleeding-Disorders/Hemophilia-B.

  13. Darby SC, Kan SW, Spooner RJ, Giangrande PLF, Hill FGH, Hay CRM, et al. Mortality rates, life expectancy, and causes of death in people with hemophilia A or B in the United Kingdom who were not infected with HIV. Blood. 2007;110(3):815–25. doi:10.1182/blood-2006-10-050435.

    Article  CAS  PubMed  Google Scholar 

  14. White 2nd GC, Rosendaal F, Aledort LM, Lusher JM, Rothschild C, Ingerslev J. Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis. J Thromb Haemost. 2001;85(3):560.

    CAS  Google Scholar 

  15. Colman RW. Are hemostasis and thrombosis two sides of the same coin? J Exp Med. 2006;203(3):493–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Manco-Johnson MJ, Abshire TC, Shapiro AD, Riske B, Hacker MR, Kilcoyne R, et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N Engl J Med. 2007;357(6):535–44.

    Article  CAS  PubMed  Google Scholar 

  17. Chalmers EA. Haemophilia and the newborn. Blood Rev. 2004;18(2):85–92.

    Article  PubMed  Google Scholar 

  18. Kulkarni R, Soucie J, Lusher J, Presley R, Shapiro A, Gill J, et al. Sites of initial bleeding episodes, mode of delivery and age of diagnosis in babies with haemophilia diagnosed before the age of 2 years: a report from The Centers for Disease Control and Prevention’s (CDC) Universal Data Collection (UDC) project. Haemophilia. 2009;15(6):1281–90.

    Article  CAS  PubMed  Google Scholar 

  19. Lee CA, Berntorp EE, Hoots K, Ebooks C. Textbook of hemophilia. Vol book, whole. Chichester: Wiley; 2010.

    Book  Google Scholar 

  20. Sellner LN, Taylor GR. MLPA and MAPH: new techniques for detection of gene deletions. Hum Mutat. 2004;23(5):413–9.

    Article  CAS  PubMed  Google Scholar 

  21. Kwon MJ, Yoo KY, Kim HJ, Kim SH. Identification of mutations in the F9 gene including exon deletion by multiplex ligation-dependent probe amplification in 33 unrelated Korean patients with haemophilia B. Haemophilia. 2008;14(5):1069–75.

    Article  CAS  PubMed  Google Scholar 

  22. Yoshitake S, Schach BG, Foster DC, Davie EW, Kurachi K. Complete nucleotide sequences of the gene for human factor IX (antihemophilic factor B). Biochemistry. 1985;24(14):3736–50.

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt AE, Bajaj SP. Structure–function relationships in factor IX and factor IXa. Trends in Cardiovascular Medicine. 2003;13(1):39–45. doi:10.1016/S1050-1738(02)00210-4.

    Article  CAS  PubMed  Google Scholar 

  24. College DoBD. Coagulation Factor IX. Structure–function relationships in factor IX and factor IXa. 2003.

  25. Fay PJ. Activation of factor VIII and mechanisms of cofactor action. Blood Rev. 2004;18(1):1–15.

    Article  PubMed  Google Scholar 

  26. Brandstetter H, Bauer M, Huber R, Lollar P, Bode W. X-ray structure of clotting factor IXa: active site and module structure related to Xase activity and hemophilia B. Proc Natl Acad Sci. 1995;92(21):9796–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hopfner K-P, Lang A, Karcher A, Sichler K, Kopetzki E, Brandstetter H, et al. Coagulation factor IXa: the relaxed conformation of Tyr99 blocks substrate binding. Structure. 1999;7(8):989–96.

    Article  CAS  PubMed  Google Scholar 

  28. Rao Z, Handford P, Mayhew M, Knott V, Brownlee GG, StuartZ D. The structure of a Ca 2+-binding epidermal growth factor-like domain: its role in protein-protein interactions. Cell. 1995;82(1):131–41.

    Article  CAS  PubMed  Google Scholar 

  29. Huang M, Furie BC, Furie B. Crystal structure of the calcium-stabilized human factor IX Gla domain bound to a conformation-specific anti-factor IX antibody. J Biol Chem. 2004;279(14):14338–46.

    Article  CAS  PubMed  Google Scholar 

  30. Shen BW, Spiegel PC, Chang C-H, Huh J-W, Lee J-S, Kim J, et al. The tertiary structure and domain organization of coagulation factor VIII. Blood. 2008;111(3):1240–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ngo JCK, Huang M, Roth DA, Furie BC, Furie B. Crystal structure of human factor VIII: implications for the formation of the factor IXa-factor VIIIa complex. Structure. 2008;16(4):597–606.

    Article  CAS  PubMed  Google Scholar 

  32. Autin L, Miteva M, Lee W, Mertens K, RADTKE KP, Villoutreix B. Molecular models of the procoagulant factor VIIIa–factor IXa complex. J Thromb Haemost. 2005;3(9):2044–56.

    Article  CAS  PubMed  Google Scholar 

  33. Koeberl DD, Bottema C, Buerstedde J, Sommer SS. Functionally important regions of the factor IX gene have a low rate of polymorphism and a high rate of mutation in the dinucleotide CpG. Am J Hum Genet. 1989;45(3):448.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Green P, Saad S, Lewis C, Giannelli F. Mutation rates in humans. I. Overall and sex-specific rates obtained from a population study of hemophilia B. Am J Hum Genet. 1999;65(6):1572–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saunders RE, Perkins SJ. CoagMDB: a database analysis of missense mutations within four conserved domains in five vitamin K–dependent coagulation serine proteases using a text-mining tool. Hum Mutat. 2008;29(3):333–44.

    Article  CAS  PubMed  Google Scholar 

  36. Thompson A, Bajaj SP, Chen S-H, MacGillivray R. "Founder" effect in different families with haemophilia B mutation. Lancet. 1990;335(8686):418.

    Article  CAS  PubMed  Google Scholar 

  37. Anagnostopoulos T, Morris A, Ayres KL, Giannelli F, Green P. DNA variation in a 13-Mb region including the F9 gene: inferring the genealogical history and causal role of a hemophilia B mutation (IVS 5+ 13 A→ G). J Thromb Haemost. 2003;1(12):2609–14.

    Article  CAS  PubMed  Google Scholar 

  38. Jenkins P, Egan H, Keenan C, O’SHEA E, Smith O, Nolan B, et al. Mutation analysis of haemophilia B in the Irish population: increased prevalence caused by founder effect. Haemophilia. 2008;14(4):717–22.

    Article  CAS  PubMed  Google Scholar 

  39. Ljung R, Nilsson IM. Hemophilia B Leyden and a similar variant of hemophilia A. N Engl J Med. 1982;307(14):897.

    CAS  PubMed  Google Scholar 

  40. Crossley M, Ludwig M, Stowell KM, De Vos P, Olek K, Brownlee GG. Recovery from hemophilia B Leyden: an androgen-responsive element in the factor IX promoter. Science. 1992;257(5068):377–9.

    Article  CAS  PubMed  Google Scholar 

  41. DiMichele D. Inhibitor development in haemophilia B: an orphan disease in need of attention. Br J Haematol. 2007;138(3):305–15. doi:10.1111/j.1365-2141.2007.06657.x.

    Article  CAS  PubMed  Google Scholar 

  42. Jameel F, Hershenson S. Formulation and process development strategies for manufacturing biopharmaceuticals. Vol book, whole. Hoboken: Wiley; 2010.

    Book  Google Scholar 

  43. Biogen-Idec. Press Release. 2014. http://www.biogenidec.com/press_release_details.aspx?ID=14712&Action=1&NewsId=2303&M=NewsV2&PID=61997.

  44. Berntorp E, Shapiro AD. Modern haemophilia care. Lancet. 2012;379(9824):1447–56.

    Article  PubMed  Google Scholar 

  45. Ljung RC. Aspects of haemophilia prophylaxis in Sweden. Haemophilia. 2002;2:34–7.

    Article  Google Scholar 

  46. Yee TT, Beeton K, Griffioen A, Harrington C, Miners A, Lee CA, et al. Experience of prophylaxis treatment in children with severe haemophilia. Haemophilia. 2002;8(2):76–82.

    Article  CAS  PubMed  Google Scholar 

  47. Mancuso ME, Berardinelli L, Beretta C, Raiteri M, Pozzoli E, Santagostino E. Improved treatment feasibility in children with hemophilia using arteriovenous fistulae: the results after seven years of follow-up. Haematologica. 2009;94(5):687–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Healthcare Observer Jan 2013: The hemophilia B market. Morningstar. 2013.

  49. Mullard A. Biogen Idec enters hemophilia B market. Nat Biotechnol. 2014;32(6):506.

    Article  CAS  Google Scholar 

  50. Product Pipeline: Factor IX. Canadian Hemophilia Society. http://www.hemophilia.ca/en/.

  51. Peters RT, Low SC, Kamphaus GD, Dumont JA, Amari JV, Lu Q, et al. Prolonged activity of factor IX as a monomeric Fc fusion protein. Blood. 2010;115(10):2057–64.

    Article  CAS  PubMed  Google Scholar 

  52. Østergaard H, Bjelke JR, Hansen L, Petersen LC, Pedersen AA, Elm T, et al. Prolonged half-life and preserved enzymatic properties of factor IX selectively PEGylated on native N-glycans in the activation peptide. Blood. 2011;118(8):2333–41. doi:10.1182/blood-2011-02-336172.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Karpf DM, Sørensen BB, Hermit MB, Holmberg HL, Tranholm M, Bysted BV, et al. Prolonged half-life of glycoPEGylated rFVIIa variants compared to native rFVIIa. Thromb Res. 2011;128(2):191–5. doi:10.1016/j.thromres.2011.02.018.

    Article  CAS  PubMed  Google Scholar 

  54. Stennicke HR, Ostergaard H, Bayer RJ, Kalo MS, Kinealy K, Holm PK, et al. Generation and biochemical characterization of glycoPEGylated factor VIIa derivatives. Thromb Haemost. 2008;100(5):920–8.

    CAS  PubMed  Google Scholar 

  55. Zhou Z-Y, Koerper MA, Johnson KA, Riske B, Baker JR, Ullman M, et al. Burden of illness: direct and indirect costs among persons with hemophilia A in the United States. J Med Econ. 2015;18(6):457–65.

    Article  PubMed  Google Scholar 

  56. Eldar-Lissai A, Hou Q, Krishnan S. The changing costs of caring for hemophilia patients in the US: insurers’ and patients’ perspectives. Blood. 2014;124(21):199.

    Google Scholar 

  57. Dimichele DM. Immune tolerance: critical issues of factor dose, purity and treatment complications. Haemophilia. 2006;12:81–6. doi:10.1111/j.1365-2516.2006.01376.x.

    Article  PubMed  Google Scholar 

  58. Thorland EC, Drost JB, Lusher JM, Warrier I, Shapiro A, Koerper MA, et al. Anaphylactic response to factor IX replacement therapy in haemophilia B patients: complete gene deletions confer the highest risk. Haemophilia. 1999;5(2):101–5. doi:10.1046/j.1365-2516.1999.t01-1-00303.x.

    Article  CAS  PubMed  Google Scholar 

  59. Peppas NA, Horava SD. Polymers for delivery of factor VIII and/or factor IX. US Patent 20,160,136,291; 2016.

  60. Horava SD, Peppas NA. Design of pH-responsive biomaterials to enable the oral route of hematological factor IX. Ann Biomed Eng. 2016;44(6):1970–82. doi:10.1007/s10439-016-1566-x.

    Article  PubMed  Google Scholar 

  61. Horava SD, Moy KJ, Peppas NA. Novel biodegradable hydrophilic carriers for the oral delivery of hematologial factor IX for treatment of hemophilia B. Int J Pharm. 2016;514(1):220–8. doi:10.1016/j.ijpharm.2016.05.056.

    Article  CAS  PubMed  Google Scholar 

  62. Sharpe LA, Daily AM, Horava SD, Peppas NA. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv. 2014;11(6):901–15. doi:10.1517/17425247.2014.902047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lowman AM, Morishita M, Kajita M, Nagai T, Peppas NA. Oral delivery of insulin using pH-responsive complexation gels. J Pharm Sci. 1999;88(9):933–7. doi:10.1021/js980337n.

    Article  CAS  PubMed  Google Scholar 

  64. Nakamura K, Murray RJ, Joseph JI, Peppas NA, Morishita M, Lowman AM. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics. J Control Release. 2004;95(3):589–99. doi:10.1016/j.jconrel.2003.12.022.

    Article  CAS  PubMed  Google Scholar 

  65. Morishita M, Goto T, Nakamura K, Lowman AM, Takayama K, Peppas NA. Novel oral insulin delivery systems based on complexation polymer hydrogels: single and multiple administration studies in type 1 and 2 diabetic rats. J Control Release. 2006;110(3):587–94. doi:10.1016/j.jconrel.2005.10.029.

    Article  CAS  PubMed  Google Scholar 

  66. Wood KM, Stone GM, Peppas NA. Wheat germ agglutinin functionalized complexation hydrogels for oral insulin delivery. Biomacromolecules. 2008;9(4):1293–8. doi:10.1021/bm701274p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wood KM, Stone GM, Peppas NA. The effect of complexation hydrogels on insulin transport in intestinal epithelial cell models. Acta Biomater. 2010;6(1):48–56. doi:10.1016/j.actbio.2009.05.032.

    Article  CAS  PubMed  Google Scholar 

  68. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50(1):27–46. doi:10.1016/S0939-6411(00)00090-4.

    Article  CAS  PubMed  Google Scholar 

  69. Verma D, Moghimi B, LoDuca PA, Singh HD, Hoffman BE, Herzog RW, et al. Oral delivery of bioencapsulated coagulation factor IX prevents inhibitor formation and fatal anaphylaxis in hemophilia B mice. Proc Natl Acad Sci U S A. 2010;107(15):7101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kwon K-C, Verma D, Singh ND, Herzog R, Daniell H. Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Adv Drug Deliv Rev. 2013;65(6):782–99. doi:10.1016/j.addr.2012.10.005.

    Article  CAS  PubMed  Google Scholar 

  71. Guan ZJ, Guo B, Huo YL, Guan ZP, Dai JK, Wei YH. Recent advances and safety issues of transgenic plant-derived vaccines. Appl Microbiol Biotechnol. 2013;97(7):2817–40.

    Article  CAS  PubMed  Google Scholar 

  72. Sherman A, Su J, Daniell H, Herzog RW. Mechanism of oral tolerance induced by bioencapsulated coagulation factor IX in hemophilia B mice. Blood. 2013;122(21):30.

    Google Scholar 

  73. Wang X, Su J, Sherman A, Rogers GL, Liao G, Hoffman BE, et al. Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP+ CD4+ T cells. Blood. 2015;125(15):2418–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Su J, Zhu L, Sherman A, Wang X, Lin S, Kamesh A, et al. Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials. 2015;70:84–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pannier AK, Shea LD. Controlled release systems for DNA delivery. Mol Ther. 2004;10(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  76. Nathwani AC, Reiss UM, Tuddenham EGD, Rosales C, Chowdary P, McIntosh J, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med. 2014;371(21):1994–2004. doi:10.1056/NEJMoa1407309.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nathwani AC, Gray JT, McIntosh J, Ng CYC, Zhou J, Spence Y, et al. Safe and efficient transduction of the liver after peripheral vein infusion of self-complementary AAV vector results in stable therapeutic expression of human FIX in nonhuman primates. Blood. 2007;109(4):1414–21. doi:10.1182/blood-2006-03-010181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012—an update. The Journal of Gene Medicine. 2013;15(2):65–77. doi:10.1002/jgm.2698.

    Article  CAS  PubMed  Google Scholar 

  79. High KH, Nathwani A, Spencer T, Lillicrap D. Current status of haemophilia gene therapy. Haemophilia. 2014;4:43–9.

    Article  Google Scholar 

  80. Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet. 2014;15(7):445–51. doi:10.1038/nrg3742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dose-escalation study of a self complementary adeno-associated viral vector of gene transfer in hemophilia B [database on the Internet] 2009. Available from: http://clinicaltrials.gov/ct2/show/NCT00979238?term=hemophilia+B&rank=.

  82. Hemophilia B gene therapy—Spark [database on the Internet]2012. Available from: http://clinicaltrials.gov/ct2/show/NCT01620801?term=hemophilia+B&rank=11.

  83. Open-label single ascending dose of adeno-associated virus serotype 8 factor IX gene therapy in adults with hemophilia B [database on the Internet] 2012. Available from: http://clinicaltrials.gov/ct2/show/NCT01687608?term=hemophilia+B&rank=12.

  84. Wright J. Product-related impurities in clinical-grade recombinant AAV vectors: characterization and risk assessment. Biomedicines. 2014;2(1):80–97.

    Article  Google Scholar 

  85. Skinner MW. Gene therapy for hemophilia: addressing the coming challenges of affordability and accessibility. Mol Ther. 2013;21(1):1–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the National Institutes of Health (R01-EB-000246-21) and the Fletcher S. Pratt Foundation. SDH acknowledges support from the National Science Foundation Graduate Research Fellowship Program (DGE-1110007) and the P.E.O. Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Peppas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horava, S.D., Peppas, N.A. Recent advances in hemophilia B therapy. Drug Deliv. and Transl. Res. 7, 359–371 (2017). https://doi.org/10.1007/s13346-017-0365-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0365-8

Keywords

Navigation