Skip to main content

Advertisement

Log in

On-demand microbicide products: design matters

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Sexual intercourse (vaginal and anal) is the predominant mode of human immunodeficiency virus (HIV) transmission. Topical microbicides used in an on-demand format (i.e., immediately before or after sex) can be part of an effective tool kit utilized to prevent sexual transmission of HIV. The effectiveness of prevention products is positively correlated with adherence, which is likely to depend on user acceptability of the product. The development of an efficacious and acceptable product is therefore paramount for the success of an on-demand product. Acceptability of on-demand products (e.g., gels, films, and tablets) and their attributes is influenced by a multitude of user-specific factors that span behavioral, lifestyle, socio-economic, and cultural aspects. In addition, physicochemical properties of the drug, anatomical and physiological aspects of anorectal and vaginal compartments, issues relating to large-scale production, and cost can impact product development. These factors together with user preferences determine the design space of an effective, acceptable, and feasible on-demand product. In this review, we summarize the interacting factors that together determine product choice and its target product profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. HIV/AIDS Data and Statistics. World Health Organization. 2017. http://www.who.int/hiv/data/en/. Accessed January 12 2017.

  2. Higgins JA, Hoffman S, Dworkin SL. Rethinking gender, heterosexual men, and women’s vulnerability to HIV/AIDS. Am J Public Health. 2010;100(3):435–45. doi:10.2105/Ajph.2009.159723.

    Article  PubMed  PubMed Central  Google Scholar 

  3. HIV AIDS Statistics Overview. Centers for Disease Control and Prevention. http://www.cdc.gov/hiv/statistics/overview/. Accessed January 8 2017.

  4. O’Leary A, DiNenno E, Honeycutt A, Allaire B, Neuwahl S, Hicks K, et al. Contribution of anal sex to HIV prevalence among heterosexuals: a modeling analysis. AIDS Behav. 2017;1–9. doi:10.1007/s10461-016-1635-z.

  5. Baggaley RF, White RG, Boily MC. HIV transmission risk through anal intercourse: systematic review, meta-analysis and implications for HIV prevention. Int J Epidemiol. 2010;39(4):1048–63. doi:10.1093/ije/dyq057.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L, et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. New Engl J Med. 2010;363(27):2587–99. doi:10.1056/NEJMoa1011205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hendrix CW, Chen BA, Guddera V, Hoesley C, Justman J, Nakabiito C, et al. MTN-001: randomized pharmacokinetic cross-over study comparing tenofovir vaginal gel and oral tablets in vaginal tissue and other compartments. PLoS One. 2013;8(1):e55013. doi:10.1371/journal.pone.0055013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Malcolm RK, Lowry D, Boyd P, Geer L, Veazey RS, Goldman L, et al. Pharmacokinetics of a CCR5 inhibitor in rhesus macaques following vaginal, rectal and oral application. J Antimicrob Chemother. 2014;69(5):1325–9. doi:10.1093/jac/dkt506.

    Article  CAS  PubMed  Google Scholar 

  9. Karim QA, Karim SSA, Frohlich JA, Grobler AC, Baxter C, Mansoor LE, et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science. 2010;329(5996):1168–74. doi:10.1126/science.1193748.

    Article  Google Scholar 

  10. Rees H., Delany-Moretlwe S., Baron D., Lombard C., Gray G., Myer L., Panchia R., Schwartz J., Doncel G. FACTS 001 Phase III trial of pericoital tenofovir 1% gel for HIV prevention in women [abstract 26LB]. Program and abstracts of the 2015 Conference on Retroviruses and Opportunistic Infections (CROI) Seattle: CROI2015.

  11. Baeten JM, Palanee-Phillips T, Brown ER, Schwartz K, Soto-Torres LE, Govender V, et al. Use of a vaginal ring containing dapivirine for HIV-1 prevention in women. N Engl J Med. 2016;375(22):2121–32. doi:10.1056/NEJMoa1506110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nel A, van Niekerk N, Kapiga S, Bekker LG, Gama C, Gill K, et al. Safety and efficacy of a dapivirine vaginal ring for HIV prevention in women. N Engl J Med. 2016;375(22):2133–43. doi:10.1056/NEJMoa1602046.

    Article  CAS  PubMed  Google Scholar 

  13. Hladik F, McElrath MJ. Setting the stage: host invasion by HIV. Nat Rev Immunol. 2008;8(6):447–57. doi:10.1038/nri2302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nunes R, Sarmento B, das Neves J Formulation and delivery of anti-HIV rectal microbicides: advances and challenges. J Control Release 2014;194:278–294. doi:10.1016/j.jconrel.2014.09.013.

  15. Cranston RD, Lama JR, Richardson BA, Carballo-Dieguez A, Kunjara Na Ayudhya RP, Liu K et al. MTN-017: a rectal phase 2 extended safety and acceptability study of tenofovir reduced-glycerin 1% gel. Clin Infect Dis. 2016. doi:10.1093/cid/ciw832.

  16. Friedland BA, Hoesley CJ, Plagianos M, Hoskin E, Zhang S, Teleshova N, et al. First-in-human trial of MIV-150 and zinc acetate coformulated in a carrageenan gel: safety, pharmacokinetics, acceptability, adherence, and pharmacodynamics. Jaids-J Acq Imm Def. 2016;73(5):489–96. doi:10.1097/QAI.0000000000001136.

    Article  CAS  Google Scholar 

  17. Bunge KE, Dezzutti CS, Rohan LC, Hendrix CW, Marzinke MA, Richardson-Harman N, et al. A phase 1 trial to assess the safety, acceptability, pharmacokinetics, and pharmacodynamics of a novel dapivirine vaginal film. Jaids-J Acq Imm Def. 2016;71(5):498–505. doi:10.1097/Qai.0000000000000897.

    Article  CAS  Google Scholar 

  18. Robinson JA, Marzinke MA, Bakshi RP, Fuchs EJ, Radebaugh CL, Aung W, et al. Comparison of dapivirine vaginal gel and film formulation pharmacokinetics and pharmacodynamics (FAME 02B). AIDS Res Hum Retrovir. 2016; doi:10.1089/AID.2016.0040.

    PubMed  Google Scholar 

  19. Rohan LC, Sassi AB. Vaginal drug delivery systems for HIV prevention. AAPS J. 2009;11(1):78–87. doi:10.1208/s12248-009-9082-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferguson LM, Rohan LC. The importance of the vaginal delivery route for antiretrovirals in HIV prevention. Ther Deliv. 2011;2(12):1535–50. doi:10.4155/tde.11.126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Owen DH, Katz DF. A vaginal fluid simulant. Contraception. 1999;59(2):91–5. doi:10.1016/S0010-7824(99)00010-4.

    Article  CAS  PubMed  Google Scholar 

  22. Aldunate M, Tyssen D, Johnson A, Zakir T, Sonza S, Moench T, et al. Vaginal concentrations of lactic acid potently inactivate HIV. J Antimicrob Chemother. 2013;68(9):2015–25. doi:10.1093/jac/dkt156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boily MC, Baggaley RF, Wang L, Masse B, White RG, Hayes RJ, et al. Heterosexual risk of HIV-1 infection per sexual act: systematic review and meta-analysis of observational studies. Lancet Infect Dis. 2009;9(2):118–29. doi:10.1016/S1473-3099(09)70021-0.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Atashili J, Poole C, Ndumbe PM, Adimora AA, Smith JS. Bacterial vaginosis and HIV acquisition: a meta-analysis of published studies. AIDS. 2008;22(12):1493–501. doi:10.1097/QAD.0b013e3283021a37.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cohen J. Vaginal microbiome affects HIV risk. Science. 2016;353(6297):331. doi:10.1126/science.353.6297.331.

  26. Taneva E. CS, Cheshenko, N., Srinivasan S., Fredricks DN., Herold BC., editor Modulation of tenofovir (TFV) pharmacokinetics (PK) and antiviral activity by vaginal microbiota: implications for topical preexposure prophylaxis. HIV R4P; 2016; Chicago, IL

  27. Wald A, Link K. Risk of human immunodeficiency virus infection in herpes simplex virus type 2-seropositive persons: a meta-analysis. The Journal of infectious diseases. 2002;185(1):45–52. doi:10.1086/338231.

    Article  PubMed  Google Scholar 

  28. Villegas G, Calenda G, Zhang S, Mizenina O, Kleinbeck K, Cooney ML, et al. In vitro exposure to PC-1005 and cervicovaginal lavage fluid from women vaginally administered PC-1005 inhibits HIV-1 and HSV-2 infection in human cervical mucosa. Antimicrob Agents Chemother. 2016;60(9):5459–66. doi:10.1128/AAC.00392-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kelley C, Kraft C, de Man TJ, Duphare C, Lee H, Yang J, et al. The rectal mucosa and condomless receptive anal intercourse in HIV-negative MSM: implications for HIV transmission and prevention. Mucosal Immunol. 2016. doi:10.1038/mi.2016.97.

  30. Gao Y, Yuan A, Chuchuen O, Ham A, Yang KH, Katz DF. Vaginal deployment and tenofovir delivery by microbicide gels. Drug Deliv Transl Re. 2015;5(3):279–94. doi:10.1007/s13346-015-0227-1.

    Article  CAS  Google Scholar 

  31. Weld ED, Hiruy H, Guthrie KM, Fava JL, Vargas SE, Buckheit K, et al. A comparative pre-phase I study of the impact of gel vehicle volume on distal colon distribution, user experience, and acceptability. AIDS Res Hum Retrovir. 2016; doi:10.1089/AID.2016.0167.

    PubMed  Google Scholar 

  32. Abbai NS, Wand H, Ramjee G. Biological factors that place women at risk for HIV: evidence from a large-scale clinical trial in Durban. Bmc Womens Health. 2016;16. doi:ARTN 19. 10.1186/s12905-016-0295-5.

  33. Butler K, Ritter JM, Ellis S, Morris MR, Hanson DL, McNicholl JM, et al. A depot medroxyprogesterone acetate dose that models human use and its effect on vaginal SHIV acquisition risk. Jaids-J Acq Imm Def. 2016;72(4):363–71. doi:10.1097/Qai.0000000000000975.

    Article  CAS  Google Scholar 

  34. Veazey RS, Shattock RJ, Klasse PJ, Moore JP. Animal models for microbicide studies. Curr HIV Res. 2012;10(1):79–87. doi:10.2174/157016212799304715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu M, Zhou T, Dezzutti CS, Rohan LC. The effect of commonly used excipients on the epithelial integrity of human cervicovaginal tissue. AIDS Res Hum Retrovir. 2016;32(10–11):992–1004. doi:10.1089/AID.2016.0014.

    Article  CAS  PubMed  Google Scholar 

  36. Gali Y, Delezay O, Brouwers J, Addad N, Augustijns P, Bourlet T et al. In vitro evaluation of viability, integrity, and inflammation in genital epithelia upon exposure to pharmaceutical excipients and candidate microbicides. Antimicrobial agents and chemotherapy. 2010;54(12):5105–14. doi:Doi 10.1128/Aac.00456-10.

  37. Hu M, Patel SK, Zhou T, Rohan LC. Drug transporters in tissues and cells relevant to sexual transmission of HIV: implications for drug delivery. J Control Release. 2015;219:681–96. doi:10.1016/j.jconrel.2015.08.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grammen C, Baes M, Haenen S, Verguts J, Augustyns K, Zydowsky T, et al. Vaginal expression of efflux transporters and the potential impact on the disposition of microbicides in vitro and in rabbits. Mol Pharm. 2014;11(12):4405–14. doi:10.1021/mp5005004.

    Article  CAS  PubMed  Google Scholar 

  39. Koppolu S, Wang L, Dezzutti CS, Isaacs CE, Moncla B, Hillier SL et al. Impact of microbicide formulation on glycosylation and innate immunity in cervicovaginal fluid. The FASEB Journal. 2016;30(1 Supplement):lb120-lb.

  40. Nel A, Haazen W, Russell M, Nuttall J, Van Niekerk N, Treijtel N. Drug-drug interactions between the dapivirine vaginal ring (Ring-004) and miconazole nitrate vaginal capsule (Gyno-Daktarin®). Aids Res Hum Retrov. 2014;30:A144-A. doi:10.1089/aid.2014.5291.abstract.

  41. Rohan LC, Yang H, Wang L. Rectal pre-exposure prophylaxis (PrEP). Antivir Res. 2013;100(Suppl):S17–24. doi:10.1016/j.antiviral.2013.09.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Anton PA, Cranston RD, Kashuba A, Hendrix CW, Bumpus NN, Richardson-Harman N, et al. RMP-02/MTN-006: a phase 1 rectal safety, acceptability, pharmacokinetic, and pharmacodynamic study of tenofovir 1% gel compared with oral tenofovir disoproxil fumarate. AIDS Res Hum Retrovir. 2012;28(11):1412–21. doi:10.1089/AID.2012.0262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McGowan I, Hoesley C, Cranston RD, Andrew P, Janocko L, Dai JY, et al. A phase 1 randomized, double blind, placebo controlled rectal safety and acceptability study of tenofovir 1% gel (MTN-007). PLoS One. 2013;8(4):e60147. doi:10.1371/journal.pone.0060147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carballo-Dieguez A, Exner T, Dolezal C, Pickard R, Lin P, Mayer KH. Rectal microbicide acceptability. Results of a volume escalation trial. Sex Transm Dis. 2007;34(4):224–9. doi:10.1097/01.olq.0000233715.59239.83.

    Article  PubMed  Google Scholar 

  45. Katz D, Ham A, Smith J, Guthrie K, Simons M, Gao Y et al. Do microbicide gel volume and properties matter? Effects on deployment, PK and user sensory perceptions and experiences. HIV Research for Prevention (R4P); Chicago, IL2016.

  46. Carballo-Dieguez A, Giguere R, Dolezal C, Bauermeister J, Leu CS, Valladares J, et al. Rectal-specific microbicide applicator: evaluation and comparison with a vaginal applicator used rectally. AIDS Behav. 2014;18(9):1734–45. doi:10.1007/s10461-014-0793-0.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Omar RF, Trottier S, Brousseau G, Ouellet C, Danylo A, Ong T, et al. Universal vaginal applicator for the uniform distribution of vaginal gel and cream formulations: a magnetic resonance imaging study. J Obstet Gynaecol Can. 2014;36(1):42–50. doi:10.1016/S1701-2163(15)30682-4.

    Article  PubMed  Google Scholar 

  48. Gross M, Celum CL, Tabet SR, Kelly CW, Colleti AS, Chesney MA. Acceptability of a bioadhesive nonoxynol-9 gel delivered by an applicator as a rectal microbicide. Sex Transm Dis. 1999;26(10):572–8. doi:Doi 10.1097/00007435-199911000-00006.

  49. Bauermeister J, Giguere R, Dolezal C, Leu CS, Febo I, Cranston RD, et al. To use a rectal microbicide, first insert the applicator: gel and applicator satisfaction among young men who have sex with men. AIDS Educ Prev. 2016;28(1):1–10. doi:10.1521/aeap.2016.28.1.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morrow KM, Ruiz MS. Assessing microbicide acceptability: a comprehensive and integrated approach. AIDS Behav. 2008;12(2):272–83. doi:10.1007/s10461-007-9266-z.

    Article  PubMed  Google Scholar 

  51. Primrose RJ, Zaveri T, Bakke AJ, Ziegler GR, Moskowitz HR, Hayes JE. Drivers of vaginal drug delivery system acceptability from internet-based conjoint analysis. Plos One. 2016;11(3). doi:ARTN e0150896. 10.1371/journal.pone.0150896.

  52. Lanham M, Wilcher R, Montgomery ET, Pool R, Schuler S, Lenzi R et al. Engaging male partners in women’s microbicide use: evidence from clinical trials and implications for future research and microbicide introduction. Aids Res Hum Retrov. 2014;30:A9-A. doi:10.1089/aid.2014.5005.abstract.

  53. Rosen RK, Morrow KM, Carballo-Dieguez A, Mantell JE, Hoffman S, Gai F, et al. Acceptability of tenofovir gel as a vaginal microbicide among women in a phase I trial: a mixed-methods study. J Women's Health (Larchmt). 2008;17(3):383–92. doi:10.1089/jwh.2006.0325.

    Article  Google Scholar 

  54. Giguere R, Carballo-Dieguez A, Ventuneac A, Mabragana M, Dolezal C, Chen BA, et al. Variations in microbicide gel acceptability among young women in the USA and Puerto Rico. Cult Health Sex. 2012;14(2):151–66. doi:10.1080/13691058.2011.630099.

    Article  PubMed  Google Scholar 

  55. Carballo-Dieguez A, Dolezal C, Bauermeister JA, O'Brien W, Ventuneac A, Mayer K. Preference for gel over suppository as delivery vehicle for a rectal microbicide: results of a randomised, crossover acceptability trial among men who have sex with men. Sex Transm Infect. 2008;84(6):483–7. doi:10.1136/sti.2008.030478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pines HA, Gorbach PM, Weiss RE, Hess K, Murphy R, Saunders T, et al. Acceptability of potential rectal microbicide delivery systems for HIV prevention: a randomized crossover trial. AIDS Behav. 2013;17(3):1002–15. doi:10.1007/s10461-012-0358-z.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Leyva FJ, Bakshi RP, Fuchs EJ, Li LY, Caffo BS, Goldsmith AJ, et al. Isoosmolar enemas demonstrate preferential gastrointestinal distribution, safety, and acceptability compared with hyperosmolar and hypoosmolar enemas as a potential delivery vehicle for rectal microbicides. Aids Res Hum Retrov. 2013;29(11):1487–95. doi:10.1089/aid.2013.0189.

    Article  CAS  Google Scholar 

  58. Galea JT, Kinsler JJ, Imrie J, Nurena CR, Sanchez J, Cunningham WE. Rectal douching and implications for rectal microbicides among populations vulnerable to HIV in South America: a qualitative study. Sex Transm Infect. 2014;90(1):33–5. doi:10.1136/sextrans-2013-051154.

    Article  PubMed  Google Scholar 

  59. Javanbakht M, Murphy R, Gorbach P, LeBlanc MA, Pickett J. Preference and practices relating to lubricant use during anal intercourse: implications for rectal microbicides. Sex Health. 2010;7(2):193–8. doi:10.1071/Sh09062.

    Article  PubMed  Google Scholar 

  60. Mahan ED, Morrow KM, Hayes JE. Quantitative perceptual differences among over-the-counter vaginal products using a standardized methodology: implications for microbicide development. Contraception. 2011;84(2):184–93. doi:10.1016/j.contraception.2010.11.012.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li BD, Zaveri T, Ziegler GR, Hayes JE. User preferences in a carrageenan-based vaginal drug delivery system. Plos One. 2013;8(1). doi:ARTN e54975. 10.1371/journal.pone.0054975.

  62. Li BD, Zaveri T, Ziegler GR, Hayes JE. Shape of vaginal suppositories affects willingness-to-try and preference. Antivir Res. 2013;97(3):280–4. doi:10.1016/j.antiviral.2012.12.024.

    Article  CAS  PubMed  Google Scholar 

  63. Morrow KM, Underhill K, van den Berg JJ, Vargas S, Rosen RK, Katz DF. User-identified gel characteristics: a qualitative exploration of perceived product efficacy of topical vaginal microbicides. Arch Sex Behav. 2014;43(7):1459–67. doi:10.1007/s10508-013-0235-5.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Funke C, MacMillan K, Ham A, Szeri AJ, Katz DF. Coupled gel spreading and diffusive transport models describing microbicidal drug delivery. Chem Eng Sci. 2016;152:12–20. doi:10.1016/j.ces.2016.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Katz DF, Yuan A, Gao Y. Vaginal drug distribution modeling. Adv Drug Deliv Rev. 2015;92:2–13. doi:10.1016/j.addr.2015.04.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guthrie KM, Vargas SE, Guillen M, Rosen RK, Steger A, Getz ML et al. Incorporation of early end-user feedback into the iterative design of fiber-based microbicides: considering adherence from inception. HIV Research for Prevention (R4P); Chicago, IL2016.

  67. Cook RL, Downs JS, Marrazzo J, Switzer GE, Tanriover O, Wiesenfeld H, et al. Preferred characteristics of vaginal microbicides in women with bacterial vaginosis. J Women's Health. 2009;18(8):1163–7. doi:10.1089/jwh.2008.1067.

    Article  Google Scholar 

  68. Hardy E, de Padua KS, Hebling EM, Osis MJD, Zaneveld LJD. Women’s preferences for vaginal antimicrobial contraceptives. V: attitudes of Brazilian women to the insertion of vaginal products. Contraception. 2003;67(5):391–5. doi:10.1016/S0010-7824(03)00026-X.

    Article  PubMed  Google Scholar 

  69. Anton PA, Saunders T, Elliott J, Khanukhova E, Dennis R, Adler A et al. First phase 1 double-blind, placebo-controlled, randomized rectal microbicide trial using UC781 gel with a novel index of ex vivo efficacy. Plos One. 2011;6(9). doi:ARTN e23243. 10.1371/journal.pone.0023243.

  70. Cost M, Dezzutti CS, Clark MR, Friend DR, Akil A, Rohan LC. Characterization of UC781-tenofovir combination gel products for HIV-1 infection prevention in an ex vivo ectocervical model. Antimicrob Agents Chemother. 2012;56(6):3058–66. doi:10.1128/Aac.06284-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ventuneac A, Carballo-Dieguez A, McGowan I, Dennis R, Adler A, Khanukhova E, et al. Acceptability of UC781 gel as a rectal microbicide among HIV-uninfected women and men. AIDS Behav. 2010;14(3):618–28. doi:10.1007/s10461-009-9611-5.

    Article  PubMed  Google Scholar 

  72. Nel AM, Smythe SC, Habibi S, Kaptur PE, Romano JW. Pharmacokinetics of 2 dapivirine vaginal microbicide gels and their safety vs. hydroxyethyl cellulose-based universal placebo gel. Jaids-J Acq Imm Def. 2010;55(2):161–9. doi:10.1097/QAI.0b013e3181e3293a.

    Article  CAS  Google Scholar 

  73. Akil A, Devlin B, Cost M, Rohan LC. Increased dapivirine tissue accumulation through vaginal film codelivery of dapivirine and tenofovir. Mol Pharm. 2014;11(5):1533–41. doi:10.1021/mp4007024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Morris GC, Wiggins RC, Woodhall SC, Bland JM, Taylor CR, Jespers V et al. MABGEL 1: first phase 1 trial of the anti-HIV-1 monoclonal antibodies 2F5, 4E10 and 2G12 as a vaginal microbicide. Plos One. 2014;9(12). doi:ARTN e116153. 10.1371/journal.pone.0116153.

  75. Ham AS, Cost MR, Sassi AB, Dezzutti CS, Rohan LC. Targeted delivery of PSC-RANTES for HIV-1 prevention using biodegradable nanoparticles. Pharm Res-Dordr. 2009;26(3):502–11. doi:10.1007/s11095-008-9765-2.

    Article  CAS  Google Scholar 

  76. Lagenaur LA, Swedek I, Lee PP, Parks TP. Robust vaginal colonization of macaques with a novel vaginally disintegrating tablet containing a live biotherapeutic product to prevent HIV infection in women. Plos One. 2015;10(4). doi:ARTN e0122730. 10.1371/journal.pone.0122730.

  77. Sassi AB, Cost MR, Cole AL, Cole AM, Patton DL, Gupta P, et al. Formulation development of retrocyclin 1 analog RC-101 as an anti-HIV vaginal microbicide product. Antimicrob Agents Chemother. 2011;55(5):2282–9. doi:10.1128/Aac.01190-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bronshtein V. Preservation by vaporization. Google Patents; 2016.

    Google Scholar 

  79. Yu LX. Pharmaceutical quality by design: product and process development, understanding, and control (vol 25, pg 10, 2008). Pharm Res-Dordr. 2008;25(10):2463-. doi:10.1007/s11095-008-9667-3.

  80. Krogstad EA, Woodrow KA. Manufacturing scale-up of electrospun poly(vinyl alcohol) fibers containing tenofovir for vaginal drug delivery. Int J Pharm. 2014;475(1–2):282–91. doi:10.1016/j.ijpharm.2014.08.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Terris-Prestholt F, Foss AM, Cox AP, Heise L, Meyer-Rath G, Delany-Moretlwe S et al. Cost-effectiveness of tenofovir gel in urban South Africa: model projections of HIV impact and threshold product prices. Bmc Infect Dis. 2014;14. doi:Artn 14. 10.1186/1471-2334-14-14.

  82. Blakney AK, Ball C, Krogstad EA, Woodrow KA. Electrospun fibers for vaginal anti-HIV drug delivery. Antivir Res. 2013;100:S9–S16. doi:10.1016/j.antiviral.2013.09.022.

    Article  CAS  PubMed  Google Scholar 

  83. Cerini F, Gaertner H, Madden K, Tolstorukov I, Brown S, Laukens B, et al. A scalable low-cost cGMP process for clinical grade production of the HIV inhibitor 5P12-RANTES in Pichia pastoris. Protein Expres Purif. 2016;119:1–10. doi:10.1016/j.pep.2015.10.011.

    Article  CAS  Google Scholar 

  84. Alexandre KB, Mufhandu HT, London GM, Chakauya E, Khati M. Progress and perspectives on HIV-1 microbicide development. Virology. 2016;497:69–80. doi:10.1016/j.virol.2016.07.004.

    Article  CAS  PubMed  Google Scholar 

  85. Lyu Y. Development of tenofovir prodrugs as rectal microbicides for HIV prevention: University of Pittsburgh; 2016.

    Google Scholar 

  86. Villinger F. Hypo-osmolar formulation of TFV enemas promotes uptake and transformation of TFV to TFV-DP in tissues and prevents SHIV/SIV infection. HIV Research for Prevention (HIVR4P), Chicago; 2016.

  87. Khanna N, Dalby R, Connor A, Church A, Stern J, Frazer N. Phase I clinical trial of repeat dose terameprocol vaginal ointment in healthy female volunteers. Sex Transm Dis. 2008;35(6):577–82. doi:10.1097/OLQ.0b013e31816766af.

    Article  CAS  PubMed  Google Scholar 

  88. Antimisiaris SG, Mourtas S. Recent advances on anti-HIV vaginal delivery systems development. Adv Drug Deliv Rev. 2015;92:123–45. doi:10.1016/j.addr.2015.03.015.

    Article  CAS  PubMed  Google Scholar 

  89. Dezzutti CS, Rohan LC, Wang L, Uranker K, Shetler C, Cost M, et al. Reformulated tenofovir gel for use as a dual compartment microbicide. J Antimicrob Chemoth. 2012;67(9):2139–42. doi:10.1093/jac/dks173.

    Article  CAS  Google Scholar 

  90. Ham AS, Nugent ST, Peters JJ, Katz DF, Shelter CM, Dezzutti CS, et al. The rational design and development of a dual chamber vaginal/rectal microbicide gel formulation for HIV prevention. Antivir Res. 2015;120:153–64. doi:10.1016/j.antiviral.2015.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Barnable P, Calenda G, Bonnaire T, Menon R, Levendosky K, Gettie A, et al. MIV-150/zinc acetate gel inhibits cell-associated simian-human immunodeficiency virus reverse transcriptase infection in a macaque vaginal explant model. Antimicrob Agents Chemother. 2015;59(7):3829–37. doi:10.1128/AAC.00073-15.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pereira LE, Mesquita PM, Ham A, Singletary T, Deyounks F, Martin A, et al. Pharmacokinetic and pharmacodynamic evaluation following vaginal application of IQB3002, a dual-chamber microbicide gel containing the nonnucleoside reverse transcriptase inhibitor IQP-0528 in rhesus macaques. Antimicrob Agents Chemother. 2015;60(3):1393–400. doi:10.1128/AAC.02201-15.

    Article  PubMed  Google Scholar 

  93. Date AA, Shibata A, McMullen E, La Bruzzo K, Bruck P, Belshan M, et al. Thermosensitive gel containing cellulose acetate phthalate-efavirenz combination nanoparticles for prevention of HIV-1 infection. J Biomed Nanotechnol. 2015;11(3):416–27. doi:10.1166/jbn.2015.1942.

    Article  CAS  PubMed  Google Scholar 

  94. Dobard C, Sharma S, Jhunjhunwala K, C. D, Martin A, Holder A et al. Pharmacokinetic evaluation of rectal tenofovir suppositories in macaques. HIV Research for Prevention (R4P); Chicago, IL2016.

  95. Jhunjhunwala K, Sant V, Wang L, Graebing P, Marshall L, Cummins Jr. J et al. Development of a suppository dosage form for the integrase inhibitor, MK-2048. HIV Research for Prevention (R4P); Chicago, IL2016.

  96. Zaveri T, Hayes JE, Ziegler GR. Release of tenofovir from carrageenan-based vaginal suppositories. Pharmaceutics. 2014;6(3):366–77. doi:10.3390/pharmaceutics6030366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ham A, Katz DF, Patel K, Beveridge E, Hawse A, Peters J et al. Designing microbicide suppositories for rectal or vaginal administration. HIV Research for Prevention (R4P); Chicago, IL2016.

  98. Clark MR, Peet MM, Davis S, Doncel GF, Friend DR. Evaluation of rapidly disintegrating vaginal tablets of tenofovir, emtricitabine and their combination for HIV-1 prevention. Pharmaceutics. 2014;6(4):616–31. doi:10.3390/pharmaceutics6040616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. McConville C, Major I, Devlin B, Brimer A. Development of a multi-layered vaginal tablet containing dapivirine, levonorgestrel and acyclovir for use as a multipurpose prevention technology. Eur J Pharm Biopharm. 2016;104:171–9. doi:10.1016/j.ejpb.2016.05.003.

    Article  CAS  PubMed  Google Scholar 

  100. Joshi SN, Dutta S, Kumar BK, Katti U, Kulkarni S, Risbud A, et al. Expanded safety study of Praneem polyherbal vaginal tablet among HIV-uninfected women in Pune, India: a phase II clinical trial report. Sex Transm Infect. 2008;84(5):343–7. doi:10.1136/sti.2007.029207.

    Article  CAS  PubMed  Google Scholar 

  101. Pereira LE, Clark MR, Friend DR, Garber DA, McNicholl JM, Hendry RM, et al. Pharmacokinetic and safety analyses of tenofovir and tenofovir-emtricitabine vaginal tablets in pigtailed macaques. Antimicrob Agents Chemother. 2014;58(5):2665–74. doi:10.1128/AAC.02336-13.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Fan MD, Kramzer LF, Hillier SL, Chang JC, Meyn LA, Rohan LC. Preferred physical characteristics of vaginal film microbicides for HIV prevention in Pittsburgh women. Arch Sex Behav. 2016; doi:10.1007/s10508-016-0816-1.

    Google Scholar 

  103. Garg S, Goldman D, Krumme M, Rohan LC, Smoot S, Friend DR. Advances in development, scale-up and manufacturing of microbicide gels, films, and tablets. Antivir Res. 2010;88:S19–29. doi:10.1016/j.antiviral.2010.09.010.

    Article  CAS  PubMed  Google Scholar 

  104. Repka MA, Repka SL. McGinity JW. Google Patents: Bioadhesive hot-melt extruded film for topical and mucosal adhesion applications and drug delivery and process for preparation thereof; 2002.

    Google Scholar 

  105. Nel AM, Mitchnick LB, Risha P, Muungo LTM, Norick PM. Acceptability of vaginal film, soft-gel capsule, and tablet as potential microbicide delivery methods among African women. J Women's Health. 2011;20(8):1207–14. doi:10.1089/jwh.2010.2476.

    Article  Google Scholar 

  106. Coggins C, Elias CJ, Atisook R, Bassett MT, Ettiegne-Traore V, Ghys PD et al. Women’s preferences regarding the formulation of over-the-counter vaginal spermicides. Aids. 1998;12(11):1389–91. doi:10.1097/00002030-199811000-00022.

  107. Moncla B, Bunger K, Meyn LA, Rohan L, Hillier S. The differential effects of polyvinyl alcohol based (PVA) films and gels on vaginal glycomic signatures. HIV Research for Prevention (R4P); Chicago, IL2016.

  108. Akil A, Parniak MA, Dezzutti CS, Moncla BJ, Cost MR, Li MG, et al. Development and characterization of a vaginal film containing dapivirine, a non-nucleoside reverse transcriptase inhibitor (NNRTI), for prevention of HIV-1 sexual transmission. Drug Deliv Transl Re. 2011;1(3):209–22. doi:10.1007/s13346-011-0022-6.

    Article  CAS  Google Scholar 

  109. Zhang W, Parniak MA, Sarafianos SG, Cost MR, Rohan LC. Development of a vaginal delivery film containing EFdA, a novel anti-HIV nucleoside reverse transcriptase inhibitor. Int J Pharm. 2014;461(1):203–13. doi:10.1016/j.ijpharm.2013.11.056.

    Article  CAS  PubMed  Google Scholar 

  110. Cunha-Reis C, Machado A, Barreiros L, Araujo F, Nunes R, Seabra V, et al. Nanoparticles-in-film for the combined vaginal delivery of anti-HIV microbicide drugs. J Control Release. 2016;243:43–53. doi:10.1016/j.jconrel.2016.09.020.

    Article  CAS  PubMed  Google Scholar 

  111. Costanzo CJ. Immune defense of the female lower reproductive tract and the use of monoclonal antibody-based topical microbicide films to protect against HIV infection. School of Medicine Thesis Immune defense of the female lower reproductive tract and the use of monoclonal antibody-based topical microbicide films to protect against HIV infection by Corey J Costanzo BS, Boston University; 2015.

  112. Gu J, Yang S, Ho EA. Biodegradable film for the targeted delivery of siRNA-loaded nanoparticles to vaginal immune cells. Mol Pharm. 2015;12(8):2889–903. doi:10.1021/acs.molpharmaceut.5b00073.

    Article  CAS  PubMed  Google Scholar 

  113. Teo WE, Inai R, Ramakrishna S. Technological advances in electrospinning of nanofibers. Sci Technol Adv Mat. 2011;12(1). doi:Artn 013002. 10.1088/1468-6996/12/1/013002.

  114. Chou SF, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers. J Control Release. 2015;220:584–91. doi:10.1016/j.jconrel.2015.09.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Carson D, Jiang YH, Woodrow KA. Tunable release of multiclass anti-HIV drugs that are water-soluble and loaded at high drug content in polyester blended electrospun fibers. Pharm Res-Dordr. 2016;33(1):125–36. doi:10.1007/s11095-015-1769-0.

    Article  CAS  Google Scholar 

  116. Ball C, Krogstad E, Chaowanachan T, Woodrow KA. Drug-eluting fibers for HIV-1 inhibition and contraception. Plos One. 2012;7(11). doi:ARTN e49792. 10.1371/journal.pone.0049792.

  117. Ball C, Chou SF, Jiang Y, Woodrow KA. Coaxially electrospun fiber-based microbicides facilitate broadly tunable release of maraviroc. Mat Sci Eng C-Mater. 2016;63:117–24. doi:10.1016/j.msec.2016.02.018.

    Article  CAS  Google Scholar 

  118. Huang CB, Soenen SJ, van Gulck E, Vanham G, Rejman J, Van Calenbergh S, et al. Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery. Biomaterials. 2012;33(3):962–9. doi:10.1016/j.biomaterials.2011.10.004.

    Article  CAS  PubMed  Google Scholar 

  119. Agrahari V, Meng J, Ezoulin MJ, Youm I, Dim DC, Molteni A, et al. Stimuli-sensitive thiolated hyaluronic acid based nanofibers: synthesis, preclinical safety and in vitro anti-HIV activity. Nanomedicine (Lond). 2016;11(22):2935–58. doi:10.2217/nnm-2016-0103.

    Article  CAS  Google Scholar 

  120. Grooms TN, Vuong HR, Tyo KM, Malik DA, Sims LB, Whittington CP, et al. Griffithsin-modified electrospun fibers as a delivery scaffold to prevent HIV infection. Antimicrob Agents Chemother. 2016;60(11):6518–31. doi:10.1128/Aac.00956-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. das Neves J, Nunes R, Rodrigues F, Sarmento B. Nanomedicine in the development of anti-HIV microbicides. Adv Drug Deliv Rev. 2016;103:57–75. doi:10.1016/j.addr.2016.01.017.

  122. Sanchez-Rodriguez J, Vacas-Cordoba E, Gomez R, De La Mata FJ, Munoz-Fernandez MA. Nanotech-derived topical microbicides for HIV prevention: the road to clinical development. Antivir Res. 2015;113:33–48. doi:10.1016/j.antiviral.2014.10.014.

    Article  CAS  PubMed  Google Scholar 

  123. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Price CF, Tyssen D, Sonza S, Davie A, Evans S, Lewis GR et al. SPL7013 Gel (VivaGel (R)) Retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans. Plos One. 2011;6(9). doi:ARTN e24095. 10.1371/journal.pone.0024095.

  125. Ensign LM, Tang BC, Wang YY, Tse TA, Hoen T, Cone R et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transl Med. 2012;4(138). doi:10.1126/scitranslmed.3003453.

  126. Ramanathan R, Jiang Y, Read B, Golan-Paz S, Woodrow KA. Biophysical characterization of small molecule antiviral-loaded nanolipogels for HIV-1 chemoprophylaxis and topical mucosal application. Acta Biomater. 2016;36:122–31. doi:10.1016/j.actbio.2016.02.034.

    Article  CAS  PubMed  Google Scholar 

  127. Adedipe O, Jacot T, Thurman A, Doncel GF, Clark M. Can infrared spectroscopy (IR) coupled with chemometrics be used for objective measure of adherence to microbicide products? HIV Research for Prevention (R4P)2016.

Download references

Acknowledgements

The authors are very thankful to Dr. Lindsay Ferguson Kramzer for critical reading and useful suggestions to improve the quality of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Cencia Rohan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S.K., Rohan, L.C. On-demand microbicide products: design matters. Drug Deliv. and Transl. Res. 7, 775–795 (2017). https://doi.org/10.1007/s13346-017-0385-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0385-4

Keywords

Navigation