Skip to main content

Advertisement

Log in

Design and development of insulin microneedles for diabetes treatment

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

As a painless and minimally invasive method of self-administration, microneedle is very promising to replace subcutaneous injection of insulin for type I diabetes treatment. Since the introduction of microneedles, many scholars have paid attention to and studied this technology, which has made it developed rapidly. However, there is no product on the market or in clinical trials at present. The reason is that there are still many technical problems in microneedle drug delivery system, such as the perfect integration of stable, controllable, fast, long-lasting, safe, and other necessary conditions. Here, we review the achievements that researchers have made that contain one or more of the above factors, and put some ideas to solve the limitations of insulin delivery by microneedles for reference.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Modified from Chen et al. [48]

Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L. The many faces of diabetes: a disease with increasing heterogeneity. Lancet. 2014;383(9922):1084–94.

    PubMed  Google Scholar 

  2. Ng LC, Gupta M. Transdermal drug delivery systems in diabetes management: a review. Asian J Pharm Sci. 2020;15(1):13–25.

    PubMed  Google Scholar 

  3. Guo X, Wang W. Challenges and recent advances in the subcutaneous delivery of insulin. Expert Opin Drug Deliv. 2017;14(6):727–34.

    CAS  PubMed  Google Scholar 

  4. Caucanas M, Heureux F, Muller G, Vanhooteghem O. Atypical hypodermic necrosis secondary to insulin injection: a case report and review of the literature. J Diabetes. 2011;3(1):19–20.

    PubMed  Google Scholar 

  5. Lee G, Ma Y, Lee Y-H, Jung H. Clinical Evaluation of a Low-pain Long Microneedle for Subcutaneous Insulin Injection. Biochip J. 2018;12(4):309–316.

  6. Lee KJ, Jeong SS, Roh DH, Kim DY, Choi H-K, Lee EH. A practical guide to the development of microneedle systems - In clinical trials or on the market. Int J Pharm. 2020;573.

  7. McAllister DV, Wang PM, Davis SP, Park JH, Canatella PJ, Allen MG, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci USA. 2003;100(24):13755–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang P, Zhang Y, Liu C-G. Polymeric nanoparticles based on carboxymethyl chitosan in combination with painless microneedle therapy systems for enhancing transdermal insulin delivery. RSC Adv. 2020;10(41):24319–29.

    CAS  Google Scholar 

  9. Zhao X, Coulman SA, Hanna SJ, Wong FS, Dayan CM, Birchall JC. Formulation of hydrophobic peptides for skin delivery via coated microneedles. J Control Release. 2017;265:2–13.

    CAS  PubMed  Google Scholar 

  10. Resnik D, Mozek M, Pecar B, Janez A, Urbancic V, Iliescu C, Vrtacnik D. In Vivo Experimental Study of Noninvasive Insulin Microinjection through Hollow Si Microneedle Array. Micromachines. 2018;9(1).

  11. Bolton CJW, Howells O, Blayney GJ, Eng PF, Birchall JC, Gualeni B, Roberts K, Ashraf H, Guy OJ. Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery. Lab Chip. 2020;20(15):2788–95.

    CAS  PubMed  Google Scholar 

  12. Fonseca DFS, Costa PC, Almeida IF, Dias-Pereira P, Correia-Sa I, Bastos V, et al. Pullulan microneedle patches for the efficient transdermal administration of insulin envisioning diabetes treatment. Carbohydr Polym. 2020;241.

  13. Vora LK, Courtenay AJ, Tekko IA, Larraneta E, Donnelly RF. Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules. Int J Biol Macromol. 2020;146:290–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang S, Wu F, Liu J, Fan G, Welsh W, Zhu H, et al. Phase-transition microneedle patches for efficient and accurate transdermal delivery of insulin. Adv Func Mater. 2015;25(29):4633–41.

    CAS  Google Scholar 

  15. Seong K-Y, Seo M-S, Hwang DY, O’Cearbhaill ED, Sreenan S, Karp JM, et al. A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin. J Control Release. 2017;265:48–56.

    CAS  PubMed  Google Scholar 

  16. Kirkby M, Hutton ARJ, Donnelly RF. Microneedle mediated transdermal delivery of protein, peptide and antibody based therapeutics: current status and future considerations. Pharm Res. 2020;37(6).

  17. Martanto W, Moore JS, Couse T, Prausnitz MR. Mechanism of fluid infusion during microneedle insertion and retraction. J Control Release. 2006;112(3):357–61.

    CAS  PubMed  Google Scholar 

  18. Wang PM, Cornwell M, Hill J, Prausnitz MR. Precise microinjection into skin using hollow microneedles. J Invest Dermatol. 2006;126(5):1080–7.

    CAS  PubMed  Google Scholar 

  19. Norman JJ, Brown MR, Raviele NA, Prausnitz MR, Felner EI. Faster pharmacokinetics and increased patient acceptance of intradermal insulin delivery using a single hollow microneedle in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2013;14(6):459–65.

    CAS  PubMed  Google Scholar 

  20. Carcamo-Martinez A, Mallon B, Dominguez-Robles J, Vora LK, Kurnia Anjani Q, Donnelly RF. Hollow microneedles: a perspective in biomedical applications. Int J Pharm. 2021. https://doi.org/10.1016/j.ijpharm.2021.120455,120455-120455.

    Article  PubMed  Google Scholar 

  21. Wang C, Ye Y, Sun W, Yu J, Wang J, Lawrence DS, et al. Red blood cells for glucose-responsive insulin delivery. Adv Mater. 2017;29(18).

  22. Yang R, Wu M, Lin S, Nargund RP, Li X, Kelly T, et al. A glucose-responsive insulin therapy protects animals against hypoglycemia. Jci Insight. 2018;3(1).

  23. Yu J, Zhang Y, Ye Y, DiSanto R, Sun W, Ranson D, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci USA. 2015;112(27):8260–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu J, Qian C, Zhang Y, Cui Z, Zhu Y, Shen Q, et al. Hypoxia and H2O2 dual-sensitive vesicles for enhanced glucose-responsive insulin delivery. Nano Lett. 2017;17(2):733–9.

    CAS  PubMed  Google Scholar 

  25. Xu B, Cao Q, Zhang Y, Yu W, Zhu J, Liu D, et al. Microneedles integrated with ZnO quantum-dot-capped mesoporous bioactive glasses for glucose-mediated insulin delivery. ACS Biomater Sci Eng. 2018;4(7):2473–83.

    CAS  PubMed  Google Scholar 

  26. Yang H, Ma R, Yue J, Li C, Liu Y, An Y, et al. A facile strategy to fabricate glucose-responsive vesicles via a template of thermo-sensitive micelles. Polym Chem. 2015;6(20):3837–46.

    CAS  Google Scholar 

  27. Yu J, Wang J, Zhang Y, Chen G, Mao W, Ye Y, et al. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat Biomed Eng. 2020;4(5):499–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim SW. Self-regulated glycosylated insulin delivery. J Control Release. 1990;11:193–201.

    CAS  Google Scholar 

  29. Tiegs G, Hentschel J, Wendel A. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Investig. 1992;90(1):196–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bankar SB, Bule MV, Singhal RS, Ananthanarayan L. Glucose oxidase - an overview. Biotechnol Adv. 2009;27(4):489–501.

    CAS  PubMed  Google Scholar 

  31. Webber MJ, Anderson DG. Smart approaches to glucose-responsive drug delivery. J Drug Target. 2015;23(7–8):651–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuang DJ. Study on drug delivery of silk fibroin pH sensitive microneedles, Suzhou University. 2019.

  33. Chen W, Tian R, Xu C, Yung BC, Wang G, Liu Y, et al. Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nat Commun. 2017;8.

  34. Chen M, Quan G, Sun Y, Yang D, Pan X, Wu C. Nanoparticles-encapsulated polymeric microneedles for transdermal drug delivery. J Control Release. 2020;325:163–75.

    CAS  PubMed  Google Scholar 

  35. Chen X, Wang L, Yu H, Li C, Feng J, Haq F, et al. Preparation, properties and challenges of the microneedles-based insulin delivery system. J Control Release. 2018;288:173–88.

    CAS  PubMed  Google Scholar 

  36. Chu LY, Choi S-O, Prausnitz MR. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. J Pharm Sci. 2010;99(10):4228–38.

    CAS  PubMed  Google Scholar 

  37. Sullivan SP, Murthy N, Prausnitz MR. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater. 2008;20(5):933-+.

  38. Zhang Y, Yu J, Kahkoska AR, Wang J, Buse JB, Gu Z. Advances in transdermal insulin delivery. Adv Drug Deliv Rev. 2019;139:51–70.

    CAS  PubMed  Google Scholar 

  39. Gupta J, Gill HS, Andrews SN, Prausnitz MR. Kinetics of skin resealing after insertion of microneedles in human subjects. J Control Release. 2011;154(2):148–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu X, Yu J, Qian C, Lu Y, Kahkoska AR, Xie Z, et al. H2O2-responsive vesicles integrated with transcutaneous patches for glucose-mediated insulin delivery. ACS Nano. 2017;11(1):613–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang Y, Wang J, Yu J, Wen D, Kahkoska AR, Lu Y, et al. Bioresponsive microneedles with a sheath structure for H2O2 and pH cascade-triggered insulin delivery. Small. 2018;14(14).

  42. Aronoff S, Chen TC, Cheveldayoff M. Complexation of D-glucose with borate. Carbohydr Res. 1975;40:299–309.

    CAS  Google Scholar 

  43. Sauerborn M, Brinks V, Jiskoot W, Schellekens H. Immunological mechanism underlying the immune response to recombinant human protein therapeutics. Trends Pharmacol Sci. 2010;31(2):53–9.

    CAS  PubMed  Google Scholar 

  44. Patel S, Jani P, Manseta P. Pharmaceutical approaches related to systemic delivery of protein and peptide drugs: an overview. Int J Pharm Sci Rev Res. 2012;12(1).

  45. Zhu DD, Zhang XP, Shen CB, Cui Y, Guo XD. The maximum possible amount of drug in rapidly separating microneedles. Drug Deliv Transl Res. 2019;9(6):1133–42.

    PubMed  Google Scholar 

  46. Kim S, Yang H, Eum J, Ma Y, Lahiji SF, Jung H. Implantable powder-carrying microneedles for transdermal delivery of high-dose insulin with enhanced activity. Biomaterials. 2020;232.

  47. Zhu M, Liu Y, Jiang F, Cao J, Kundu SC, Lu S. Combined silk fibroin microneedles for insulin delivery. ACS Biomater Sci Eng. 2020;6(6):3422–9.

    CAS  PubMed  Google Scholar 

  48. Chen S, Matsumoto H, Moro-oka Y, Tanaka M, Miyahara Y, Suganami T, et al. Microneedle-array patch fabricated with enzyme-free polymeric components capable of on-demand insulin delivery. Adv Funct Mater. 2019;29(7).

  49. Prausnitz MR, Mikszta JA, Cormier M, Andrianov AK. Microneedle-based vaccines. Curr Top Microbiol Immunol. 2009;333:369–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang QL, Ren JW, Chen BZ, Jin X, Zhang CY, Guo XD. Effect of humidity on mechanical properties of dissolving microneedles for transdermal drug delivery. J Ind Eng Chem. 2018;59:251–8.

    CAS  Google Scholar 

  51. Serrano-Castaneda P, Juan Escobar-Chavez J, Marlen Rodriguez-Cruz I, Maria Melgoza-Contreras L, Martinez-Hernandez J. Microneedles as enhancer of drug absorption through the skin and applications in medicine and cosmetology. J Pharm Pharm Sci. 2018;21:73–93.

    CAS  PubMed  Google Scholar 

  52. Vicente-Perez EM, Larraneta E, McCrudden MTC, Kissenpfennig A, Hegarty S, McCarthy HO, et al. Repeat application of microneedles does not alter skin appearance or barrier function and causes no measurable disturbance of serum biomarkers of infection, inflammation or immunity in mice in vivo. Eur J Pharm Biopharm. 2017;117:400–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang Q, Wang L, Yu H, Ur-Rahman K. Advances in phenylboronic acid-based closed-loop smart drug delivery system for diabetic therapy. J Control Release. 2019;305:50–64.

    CAS  PubMed  Google Scholar 

  54. Ma R, Shi L. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polym Chem. 2014;5(5):1503–18.

    CAS  Google Scholar 

  55. Huang C-M. Topical vaccination: the skin as a unique portal to adaptive immune responses. Semin Immunol. 2007;29(1):71–80.

    CAS  Google Scholar 

  56. Quinn HL, Bonham L, Hughes CM, Donnelly RF. Design of a dissolving microneedle platform for transdermal delivery of a fixed-dose combination of cardiovascular drugs. J Pharm Sci. 2015;104(10):3490–500.

    CAS  PubMed  Google Scholar 

  57. McCrudden MTC, Alkilani AZ, McCrudden CM, McAlister E, McCarthy HO, Woolfson AD, et al. Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs. J Control Release. 2014;180:71–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu W, Zhou S. Responsive materials for self-regulated insulin delivery. Macromol Biosci. 2013;13(11):1464–77.

    CAS  PubMed  Google Scholar 

  59. Yu J, Zhang Y, Bomba H, Gu Z. Stimuli-responsive delivery of therapeutics for diabetes treatment. Bioengineering & Translational Medicine. 2016;1(3):323–37.

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the support of Wuya College of Innovation of Shenyang Pharmaceutical University.

Author information

Authors and Affiliations

Authors

Contributions

Qida Zong: collected important background information and drafted the manuscript. Ranran Guo and Naijun Dong: proofread and revised the contents of the manuscript. Guixia Ling and Peng Zhang: contributed to the conception of this study; helped with constructive discussions and performed manuscript review.

Corresponding author

Correspondence to Peng Zhang.

Ethics declarations

Consent for publication

Shenyang Pharmaceutical University agrees to the submission of this paper to the journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, Q., Guo, R., Dong, N. et al. Design and development of insulin microneedles for diabetes treatment. Drug Deliv. and Transl. Res. 12, 973–980 (2022). https://doi.org/10.1007/s13346-021-00981-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-00981-y

Keywords

Navigation