Skip to main content

Advertisement

Log in

Nanodiamonds and their potential applications in breast cancer therapy: a narrative review

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Breast cancer remains the most commonly diagnosed cancer and the leading cause of cancer-related death among women worldwide. With the projected increase in breast cancer cases in recent years, optimising treatment becomes increasingly important. Current treatment modalities in breast cancer present major limitations, including chemoresistance, dose-limiting adverse effects and lack of selectivity in aggressive subtypes of breast cancers such as triple-negative breast cancer. Nanodiamonds have demonstrated promising outcomes in preclinical models from their unique surface characteristics allowing optimised delivery of various therapeutic agents, overcoming some of the significant hurdles in conventional treatment modalities. This review will present an update on preclinical findings of nanodiamond-based drug delivery systems for breast cancer therapy to date, challenges with the use of nanodiamonds along with considerations for future research.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

  2. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;10(16):5367–74. https://doi.org/10.1158/1078-0432.CCR-04-0220.

    Article  CAS  PubMed  Google Scholar 

  3. Yao H, He G, Yan S, Chen C, Song L, Rosol TJ, et al. Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget. 2017;8(1):1913–24. https://doi.org/10.18632/oncotarget.12284.

    Article  PubMed  Google Scholar 

  4. Zhu Y, Li J, Li W, Zhang Y, Yang X, Chen N, et al. The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics. 2012;2(3):302–12. https://doi.org/10.7150/thno.3627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen D, Dougherty CA, Zhu K, Hong H. Theranostic applications of carbon nanomaterials in cancer: focus on imaging and cargo delivery. J Control Release. 2015;210:230–45. https://doi.org/10.1016/j.jconrel.2015.04.021.

    Article  CAS  PubMed  Google Scholar 

  6. Man HB, Ho D. Nanodiamonds as platforms for biology and medicine. J Lab Autom. 2013;18(1):12–8. https://doi.org/10.1177/2211068212456198.

    Article  CAS  PubMed  Google Scholar 

  7. Chow EK, Zhang XQ, Chen M, Lam R, Robinson E, Huang H et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Science Translational Medicine. 2011;3(73). https://doi.org/10.1126/scitranslmed.3001713.

  8. Xiao J, Duan X, Yin Q, Zhang Z, Yu H, Li Y. Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer. Biomaterials. 2013;34(37):9648–56. https://doi.org/10.1016/j.biomaterials.2013.08.056.

    Article  CAS  PubMed  Google Scholar 

  9. Toh TB, Lee DK, Hou W, Abdullah LN, Nguyen J, Ho D, et al. Nanodiamond-mitoxantrone complexes enhance drug retention in chemoresistant breast cancer cells. Mol Pharm. 2014;11(8):2683–91. https://doi.org/10.1021/mp5001108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yuan SJ, Xu YH, Wang C, An HC, Xu HZ, Li K et al. Doxorubicin-polyglycerol-nanodiamond conjugate is a cytostatic agent that evades chemoresistance and reverses cancer-induced immunosuppression in triple-negative breast cancer. J Nanobiotechnol. 2019;17(1). https://doi.org/10.1186/s12951-019-0541-8.

  11. Zhang XQ, Lam R, Xu X, Chow EK, Kim HJ, Ho D. Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy. Adv Mater. 2011;23(41):4770–5. https://doi.org/10.1002/adma.201102263.

    Article  CAS  PubMed  Google Scholar 

  12. Grall R, Girard H, Saad L, Petit, Gesset C, Combis-Schlumberger M et al. Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds. Biomaterials. 2015;61:290–8. https://doi.org/10.1016/j.biomaterials.2015.05.034.

  13. Shenderova O, Gruen DM. Ultrananocrystalline Diamond: Synthesis, Properties, and Applications. Ultrananocrystalline Diamond: Synthesis, Properties, and Applications; 2006.

    Google Scholar 

  14. Chang YR, Lee HY, Chen K, Chang CC, Tsai DS, Fu CC, et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol. 2008;3(5):284–8. https://doi.org/10.1038/nnano.2008.99.

    Article  CAS  PubMed  Google Scholar 

  15. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–9. https://doi.org/10.1016/j.addr.2012.10.002.

    Article  CAS  PubMed  Google Scholar 

  16. Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res. 2019;38(1). https://doi.org/10.1186/s13046-019-1443-1.

  17. Setyawati MI, Mochalin VN, Leong DT. Tuning endothelial permeability with functionalized nanodiamonds. ACS Nano. 2016;10(1):1170–81. https://doi.org/10.1021/acsnano5b06487.

    Article  CAS  PubMed  Google Scholar 

  18. Mochalin VN, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamonds. Nat Nanotechnol. 2012;7(1):11–23. https://doi.org/10.1038/nnano.2011.209.

    Article  CAS  Google Scholar 

  19. Yin S, Xie Y, Cizek J, Ekoi EJ, Hussain T, Dowling DP, et al. Advanced diamond-reinforced metal matrix composites via cold spray: properties and deposition mechanism. Compos B Eng. 2017;113:44–54. https://doi.org/10.1016/j.compositesb.2017.01.009.

    Article  CAS  Google Scholar 

  20. Shenderova OA, Ciftan Hens SA. Detonation Nanodiamond Particles Processing, Modification and Bioapplications. Boston, MA: Springer US; 2009. p. 79–116.

  21. Schrand AM, Huang H, Carlson C, Schlager JJ, Ōsawa E, Hussain SM, et al. Are diamond nanoparticles cytotoxic? J Phys Chem B. 2007;111(1):2–7. https://doi.org/10.1021/jp066387v.

    Article  CAS  PubMed  Google Scholar 

  22. Schrand AM, Dai L, Schlager JJ, Hussain SM, Osawa E. Differential biocompatibility of carbon nanotubes and nanodiamonds. Diam Relat Mater. 2007;16(12):2118–23. https://doi.org/10.1016/j.diamond.2007.07.020.

    Article  CAS  Google Scholar 

  23. Chang BM, Lin HH, Su LJ, Lin WD, Lin RJ, Tzeng YK, et al. Highly fluorescent nanodiamonds protein-functionalized for cell labeling and targeting. Adv Func Mater. 2013;23(46):5737–45. https://doi.org/10.1002/adfm.201301075.

    Article  CAS  Google Scholar 

  24. Masfer HA, Fahad A, Linkun J, Abdulrahman A, Arfaan AR, Robert B, et al. Fluorescent nanodiamonds: past, present, and future. Nanophotonics. 2018;7(8):1423–53. https://doi.org/10.1515/nanoph-2018-0025.

    Article  CAS  Google Scholar 

  25. Zhang T, Cui H, Fang CY, Cheng K, Yang X, Chang HC, et al. Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer. Nanomedicine. 2015;10(4):573–87. https://doi.org/10.2217/nnm.14.141.

    Article  CAS  PubMed  Google Scholar 

  26. Mochalin VN, Gogotsi Y. Nanodiamond-polymer composites. Diam Relat Mater. 2015;58:161–71. https://doi.org/10.1016/j.diamond.2015.07.003.

    Article  CAS  Google Scholar 

  27. Ho D, Wang C-HK, Chow EK-H. Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine. Science Advances. 2015;1(7):e1500439. https://doi.org/10.1126/sciadv.1500439.

  28. Gurunathan S, Kang MH, Qasim M, Kim JH. Nanoparticle-mediated combination therapy: Two-in-one approach for cancer. Int J Mol Sci. 2018;19(10). https://doi.org/10.3390/ijms19103264.

  29. Lai L, Barnard AS. Functionalized nanodiamonds for biological and medical applications. J Nanosci Nanotechnol. 2015;15(2):989–99. https://doi.org/10.1166/jnn.2015.9735.

    Article  CAS  PubMed  Google Scholar 

  30. Jung HS, Neuman KC. Surface Modification of Fluorescent Nanodiamonds for Biological Applications. Nanomaterials (Basel). 2021;11(1). https://doi.org/10.3390/nano11010153.

  31. Fam SY, Chee CF, Yong CY, Ho KL, Mariatulqabtiah AR, Tan WS. Stealth Coating of Nanoparticles in Drug-Delivery Systems. Nanomaterials (Basel). 2020;10(4). https://doi.org/10.3390/nano10040787.

  32. Verhoef JJF, Anchordoquy TJ. Questioning the use of PEGylation for drug delivery. Drug Deliv Transl Res. 2013;3(6):499–503. https://doi.org/10.1007/s13346-013-0176-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liao WS, Ho Y, Lin YW, Naveen Raj E, Liu KK, Chen C, et al. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite. Acta Biomater. 2019;86:395–405. https://doi.org/10.1016/j.actbio.2019.01.025.

    Article  CAS  PubMed  Google Scholar 

  34. Sharma A, Goyal AK, Rath G. Recent advances in metal nanoparticles in cancer therapy. J Drug Target. 2018;26(8):617–32. https://doi.org/10.1080/1061186X.2017.1400553.

    Article  CAS  PubMed  Google Scholar 

  35. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51. https://doi.org/10.1038/nbt.3330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Douedi S, Carson M. Anthracycline Medications - Doxorubicin. 2019.

  37. Li L, Tian L, Zhao W, Li Y, Yang B. Acetate ions enhance load and stability of doxorubicin onto PEGylated nanodiamond for selective tumor intracellular controlled release and therapy. Integrative Biology (United Kingdom). 2016;8(9):956–67. https://doi.org/10.1039/c6ib00068a.

    Article  CAS  Google Scholar 

  38. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62(1):385–427. https://doi.org/10.1146/annurev.bi.62.070193.002125.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao J, Lai H, Lu H, Barner-Kowollik C, Stenzel MH, Xiao P. Fructose-coated nanodiamonds: promising platforms for treatment of human breast cancer. Biomacromol. 2016;17(9):2946–55. https://doi.org/10.1021/acs.biomac.6b00754.

    Article  CAS  Google Scholar 

  40. Lim DG, Jung JH, Ko HW, Kang E, Jeong SH. Paclitaxel-nanodiamond nanocomplexes enhance aqueous dispersibility and drug retention in cells. ACS Appl Mater Interfaces. 2016;8(36):23558–67. https://doi.org/10.1021/acsami.6b08079.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao J, Lu M, Lai H, Lu H, Lalevée J, Barner-Kowollik C, et al. Delivery of amonafide from fructose-coated nanodiamonds by oxime ligation for the treatment of human breast cancer. Biomacromol. 2018;19(2):481–9. https://doi.org/10.1021/acs.biomac.7b01592.

    Article  CAS  Google Scholar 

  42. Lai H, Lu M, Chen F, Lalevée J, Stenzel MH, Xiao P. Amphiphilic polymer coated nanodiamonds: a promising platform to deliver azonafide. Polym Chem. 2019;10(15):1904–11. https://doi.org/10.1039/C9PY00055K.

    Article  CAS  Google Scholar 

  43. Solomayer EF, Diel IJ, Meyberg GC, Gollan C, Bastert G. Metastatic breast cancer: clinical course, prognosis and therapy related to the first site of metastasis. Breast Cancer Res Treat. 2000;59(3):271–8. https://doi.org/10.1023/A:1006308619659.

    Article  CAS  PubMed  Google Scholar 

  44. Xiao J, Duan X, Yin Q, Miao Z, Yu H, Chen C, et al. The inhibition of metastasis and growth of breast cancer by blocking the NF-κB signaling pathway using bioreducible PEI-based/p65 shRNA complex nanoparticles. Biomaterials. 2013;34(21):5381–90. https://doi.org/10.1016/j.biomaterials.2013.03.084.

    Article  CAS  PubMed  Google Scholar 

  45. Mackey JR, Kerbel RS, Gelmon KA, McLeod DM, Chia SK, Rayson D, et al. Controlling angiogenesis in breast cancer: a systematic review of anti-angiogenic trials. Cancer Treat Rev. 2012;38(6):673–88. https://doi.org/10.1016/j.ctrv.2011.12.002.

    Article  CAS  PubMed  Google Scholar 

  46. Cyprian FS, Akhtar S, Gatalica Z, Vranic S. Targeted immunotherapy with a checkpoint inhibitor in combination with chemotherapy: a new clinical paradigm in the treatment of triple-negative breast cancer. Bosn J Basic Med Sci. 2019;19(3):227–33. https://doi.org/10.17305/bjbms.2019.4204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714–26. https://doi.org/10.1038/nrc3599.

    Article  CAS  PubMed  Google Scholar 

  48. Wang H, Lee DK, Chen KY, Chen JY, Zhang K, Silva A, et al. Mechanism-independent optimization of combinatorial nanodiamond and unmodified drug delivery using a phenotypically driven platform technology. ACS Nano. 2015;9(3):3332–44. https://doi.org/10.1021/acsnano.5b00638.

    Article  CAS  PubMed  Google Scholar 

  49. Xia Y, Deng X, Cao M, Liu S, Zhang X, Xiao X, et al. Nanodiamond-based layer-by-layer nanohybrids mediate targeted delivery of miR-34a for triple negative breast cancer therapy. RSC Adv. 2018;8(25):13789–97. https://doi.org/10.1039/c8ra00907d.

    Article  CAS  Google Scholar 

  50. Ito Y, Inoue A, Seers T, Hato Y, Igarashi A, Toyama T, et al. Identification of targets of tumor suppressor microRNA-34a using a reporter library system. Proc Natl Acad Sci USA. 2017;114(15):3927–32. https://doi.org/10.1073/pnas.1620019114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bader AG. MiR-34 - a microRNA replacement therapy is headed to the clinic. Frontiers in Genetics. 2012;3(JUL). https://doi.org/10.3389/fgene.2012.00120.

  52. Adams BD, Wali VB, Cheng CJ, Inukai S, Booth CJ, Agarwal S, et al. MiR-34a silences c-SRC to attenuate tumor growth in triple-negative breast cancer. Can Res. 2016;76(4):927–39. https://doi.org/10.1158/0008-5472.CAN-15-2321.

    Article  CAS  Google Scholar 

  53. Fernandez M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci. 2018;9(4):790–810. https://doi.org/10.1039/c7sc04004k.

    Article  CAS  PubMed  Google Scholar 

  54. Zitzmann S, Ehemann V, Schwab M. Arginine-glycine-aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo. Cancer Res. 2002;62(18):5139–43.

    CAS  PubMed  Google Scholar 

  55. Asati S, Pandey V, Soni V. RGD peptide as a targeting moiety for theranostic purpose: an update study. Int J Pept Res Ther. 2019;25(1):49–65. https://doi.org/10.1007/s10989-018-9728-3.

    Article  CAS  Google Scholar 

  56. Wang TT, Qian XP, Liu BR. Survivin: potential role in diagnosis, prognosis and targeted therapy of gastric cancer. World J Gastroenterol. 2007;13(20):2784–90. https://doi.org/10.3748/wjg.v13.i20.2784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bi Y, Zhang Y, Cui C, Ren L, Jiang X. Gene-silencing effects of anti-survivin siRNA delivered by RGDV-functionalized nanodiamond carrier in the breast carcinoma cell line MCF-7. Int J Nanomedicine. 2016;11:5771–87. https://doi.org/10.2147/ijn.S117611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer. 2007;109(9):1721–8. https://doi.org/10.1002/cncr.22618.

    Article  PubMed  Google Scholar 

  59. Marra A, Viale G, Curigliano G. Recent advances in triple negative breast cancer: the immunotherapy era. BMC Med. 2019;17(1):90. https://doi.org/10.1186/s12916-019-1326-5.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Metzger-Filho O, Tutt A, De Azambuja E, Saini KS, Viale G, Loi S, et al. Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol. 2012;30(15):1879–87. https://doi.org/10.1200/JCO.2011.38.2010.

    Article  CAS  PubMed  Google Scholar 

  61. Rady I, Siddiqui IA, Rady M, Mukhtar H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 2017;402:16–31. https://doi.org/10.1016/j.canlet.2017.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu CC, Hao DJ, Zhang Q, An J, Zhao JJ, Chen B, et al. Application of bee venom and its main constituent melittin for cancer treatment. Cancer Chemother Pharmacol. 2016;78(6):1113–30. https://doi.org/10.1007/s00280-016-3160-1.

    Article  CAS  PubMed  Google Scholar 

  63. Daniluk K, Kutwin M, Grodzik M, Wierzbicki M, Strojny B, Szczepaniak J et al. Use of selected carbon nanoparticles as melittin carriers for MCF-7 and MDA-MB-231 human breast cancer cells. Materials. 2020;13(1). https://doi.org/10.3390/ma13010090.

  64. Dogan BE, Turnbull LW. Imaging of triple-negative breast cancer. Ann Oncol. 2012;23:vi23-vi9. https://doi.org/10.1093/annonc/mds191.

  65. Huang HC, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release. 2011;155(3):344–57. https://doi.org/10.1016/j.jconrel.2011.06.004.

    Article  CAS  PubMed  Google Scholar 

  66. Wu Y, Ermakova A, Liu W, Pramanik G, Vu TM, Kurz A, et al. Programmable biopolymers for advancing biomedical applications of fluorescent nanodiamonds. Adv Func Mater. 2015;25(42):6576–85. https://doi.org/10.1002/adfm.201502704.

    Article  CAS  Google Scholar 

  67. Lien ZY, Hsu TC, Liu KK, Liao WS, Hwang KC, Chao JI. Cancer cell labeling and tracking using fluorescent and magnetic nanodiamond. Biomaterials. 2012;33(26):6172–85. https://doi.org/10.1016/j.biomaterials.2012.05.009.

    Article  CAS  PubMed  Google Scholar 

  68. Perevedentseva E, Lin Y-C, Cheng C-L. A review of recent advances in nanodiamond-mediated drug delivery in cancer. Expert Opinion on Drug Delivery. 2020:1–14. https://doi.org/10.1080/17425247.2021.1832988.

  69. Lin Y-W, Raj EN, Liao W-S, Lin J, Liu K-K, Chen T-H, et al. Co-delivery of paclitaxel and cetuximab by nanodiamond enhances mitotic catastrophe and tumor inhibition. Sci Rep. 2017;7(1):9814. https://doi.org/10.1038/s41598-017-09983-8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Liu KK, Zheng WW, Wang CC, Chiu YC, Cheng CL, Lo YS, et al. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology. 2010;21(31):315106. https://doi.org/10.1088/0957-4484/21/31/315106.

    Article  CAS  PubMed  Google Scholar 

  71. Li L, Tian L, Wang Y, Zhao W, Cheng F, Li Y, et al. Smart pH-responsive and high doxorubicin loading nanodiamond for in vivo selective targeting, imaging, and enhancement of anticancer therapy. Journal of Materials Chemistry B. 2016;4(29):5046–58. https://doi.org/10.1039/C6TB00266H.

    Article  CAS  PubMed  Google Scholar 

  72. Zhao L, Xu YH, Akasaka T, Abe S, Komatsu N, Watari F, et al. Polyglycerol-coated nanodiamond as a macrophage-evading platform for selective drug delivery in cancer cells. Biomaterials. 2014;35(20):5393–406. https://doi.org/10.1016/j.biomaterials.2014.03.041.

    Article  CAS  PubMed  Google Scholar 

  73. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37. https://doi.org/10.1038/nrc.2016.108.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang Y, Rhee KY, Hui D, Park S-J. A critical review of nanodiamond based nanocomposites: synthesis, properties and applications. Compos B Eng. 2018;143:19–27. https://doi.org/10.1016/j.compositesb.2018.01.028.

    Article  CAS  Google Scholar 

  75. Vaijayanthimala V, Lee DK, Kim SV, Yen A, Tsai N, Ho D, et al. Nanodiamond-mediated drug delivery and imaging: challenges and opportunities. Expert Opin Drug Deliv. 2015;12(5):735–49. https://doi.org/10.1517/17425247.2015.992412.

    Article  CAS  PubMed  Google Scholar 

  76. Khanal D, Pinget G, Ramzan I, Gautam A, Yusoff R, Yamaguchi S, et al. Protein corona determines the cytotoxicity of nanodiamonds: implications of corona formation and its remodelling on nanodiamond applications in biomedical imaging and drug delivery. Nanoscale Advances. 2020. https://doi.org/10.1039/D0NA00231C.

    Article  Google Scholar 

  77. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25. https://doi.org/10.1016/j.addr.2013.11.009.

    Article  CAS  PubMed  Google Scholar 

  78. Krüger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii AE, et al. Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon. 2005;43(8):1722–30. https://doi.org/10.1016/j.carbon.2005.02.020.

    Article  CAS  Google Scholar 

  79. Pentecost A, Gour S, Mochalin V, Knoke I, Gogotsi Y. Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. ACS Appl Mater Interfaces. 2010;2(11):3289–94. https://doi.org/10.1021/am100720n.

    Article  CAS  PubMed  Google Scholar 

  80. Krueger A, Ozawa M, Jarre G, Liang Y, Stegk J, Lu L. Deagglomeration and functionalisation of detonation diamond. physica status solidi (a). 2007;204(9):2881–7. https://doi.org/10.1002/pssa.200776330.

  81. Turcheniuk K, Trecazzi C, Deeleepojananan C, Mochalin VN. Salt-assisted ultrasonic deaggregation of nanodiamond. ACS Appl Mater Interfaces. 2016;8(38):25461–8. https://doi.org/10.1021/acsami.6b08311.

    Article  CAS  PubMed  Google Scholar 

  82. Williams OA, Hees J, Dieker C, Jäger W, Kirste L, Nebel CE. Size-Dependent reactivity of diamond nanoparticles. ACS Nano. 2010;4(8):4824–30. https://doi.org/10.1021/nn100748k.

    Article  CAS  PubMed  Google Scholar 

  83. Huang KJ, Lee CY, Lin YC, Lin CY, Perevedentseva E, Hung SF, et al. Phagocytosis and immune response studies of macrophage-nanodiamond interactions in vitro and in vivo. J Biophotonics. 2017;10(10):1315–26. https://doi.org/10.1002/jbio.201600202.

    Article  CAS  PubMed  Google Scholar 

  84. Schrand AM, Huang H, Carlson C, Schlager JJ, Omacr Sawa E, Hussain SM, et al. Are diamond nanoparticles cytotoxic? J Phys Chem B. 2007;111(1):2–7. https://doi.org/10.1021/jp066387v.

    Article  CAS  PubMed  Google Scholar 

  85. Schrand AM, Hens SAC, Shenderova OA. Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci. 2009;34(1–2):18–74. https://doi.org/10.1080/10408430902831987.

    Article  CAS  Google Scholar 

  86. Chen M, Zuo X, Xu Q, Wang R, Fan S, Wu H. Investigating the Interaction of Nanodiamonds with Human Serum Albumin and Induced Cytotoxicity. J Spectrosc. 2019;2019. https://doi.org/10.1155/2019/4503137.

  87. Zhang X, Yin J, Kang C, Li J, Zhu Y, Li W, et al. Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicol Lett. 2010;198(2):237–43. https://doi.org/10.1016/j.toxlet.2010.07.001.

    Article  CAS  PubMed  Google Scholar 

  88. Yuan Y, Chen Y, Liu J-H, Wang H, Liu Y. Biodistribution and fate of nanodiamonds in vivo. Diam Relat Mater. 2009;18(1):95–100. https://doi.org/10.1016/j.diamond.2008.10.031.

    Article  CAS  Google Scholar 

  89. Yuan Y, Wang X, Jia G, Liu J-H, Wang T, Gu Y, et al. Pulmonary toxicity and translocation of nanodiamonds in mice. Diam Relat Mater. 2010;19(4):291–9. https://doi.org/10.1016/j.diamond.2009.11.022.

    Article  CAS  Google Scholar 

  90. Mohan N, Chen CS, Hsieh HH, Wu YC, Chang HC. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010;10(9):3692–9. https://doi.org/10.1021/nl1021909.

    Article  CAS  PubMed  Google Scholar 

  91. Wierzbicki M, Sawosz E, Grodzik M, Hotowy A, Prasek M, Jaworski S, et al. Carbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis. Int J Nanomed. 2013;8:3427–35. https://doi.org/10.2147/IJN.S49745.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the National Breast Cancer Foundation Research fellowship and grant to Dr Pegah Varamini (PF-16-007)

Funding

The National Breast Cancer Foundation Research fellowship and grant to Dr Pegah Varamini (PF-16-007).

Author information

Authors and Affiliations

Authors

Contributions

Kenny Tjo: Reviewing the literature, writing the manuscript; Pegah Varamini: Design the outline, providing guidance on the manuscript, critical reviewing of the content and editing the text.

Corresponding author

Correspondence to Pegah Varamini.

Ethics declarations

Consent for publication

All authors consent for publishing this work.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tjo, K., Varamini, P. Nanodiamonds and their potential applications in breast cancer therapy: a narrative review. Drug Deliv. and Transl. Res. 12, 1017–1028 (2022). https://doi.org/10.1007/s13346-021-00996-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-00996-5

Keywords

Navigation